Kir6.2 Deficiency Promotes Mesencephalic Neural Precursor Cell Differentiation via Regulating miR-133b/GDNF in a Parkinson’s Disease Mouse Model

  • Yan Zhou
  • Jialei Zhu
  • Yang Lv
  • Chenghuan Song
  • Jianhua Ding
  • Ming Xiao
  • Ming Lu
  • Gang Hu


The loss of dopaminergic (DA) neurons in the substantia nigra (SN) is a major feature in the pathology of Parkinson’s disease (PD). Using neural stem or progenitor cells (NSC/NPCs), the prospect of replacing the missing or damaged DA neurons is very attractive for PD therapy. However, little is known about the endogenous mechanisms and molecular pathways regulating the NSC/NPC proliferation and differentiation in the development of PD. Herein, using Kir6.2 knockout (Kir6.2−/−) mice, we observed that genetic deficiency of Kir6.2 exacerbated the loss of SN DA neurons relatively early in a chronic MPTP/probenecid (MPTP/p) injection course, but rescued the damage of neurons 7 days after the last MPTP/p injection. Meanwhile, we found that Kir6.2 knockout predominantly increased the differentiation of nuclear receptor-related 1 (Nurr1+) precursors to DA neurons, indicating that Kir6.2 deficiency could activate an endogenous self-repair process. Furthermore, we demonstrated in vivo and in vitro that lack of Kir6.2 promoted neuronal differentiation via inhibiting the downregulation of glia cell line-derived neurotrophic factor (GDNF), which negatively related to the level of microRNA-133b. Notably, we revealed that Gdnf is a target gene of miR-133b and transfection of miR-133b could attenuate the enhancement of neural precursor differentiation induced by Kir6.2 deficiency. Collectively, we clarify for the first time that Kir6.2/K-ATP channel functions as a novel endogenous negative regulator of NPC differentiation, and provide a promising neuroprotective target for PD therapeutics.


Kir6.2/K-ATP Adult neurogenesis Nurr1+ precursors Differentiation miR-133b Parkinson’s disease 


Funding Information

The work reported herein was supported by the grants from the National Natural Science Foundation of China (No. 81630099, No. 81473196, No. 81773706, No. 81573403, and No. 81603083) and the key project of Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (No. 15KJA310002) and Natural Science Foundation of Jiangsu Province (BK20151559). Kir6.2 knockout mice were friendly donated by Professor Miki (Chiba University, Japan).

Compliance with Ethical Standards

All animal experiments were performed in accordance with the institutional guidelines for animal use and care, and the study protocol was approved by the ethical committee of Nanjing Medical University.

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Goedert M, Compston A (2017) Parkinson’s disease—the story of an eponym. Nat Rev Neurol 14:57–62. CrossRefPubMedGoogle Scholar
  2. 2.
    Toda T, Gage FH (2017) Review: adult neurogenesis contributes to hippocampal plasticity. Cell Tissue Res.
  3. 3.
    van den Berge SA, van Strien ME, Hol EM (2013) Resident adult neural stem cells in Parkinson’s disease—the brain’s own repair system? Eur J Pharmacol 719(1–3):117–127. CrossRefPubMedGoogle Scholar
  4. 4.
    He XJ, Nakayama H (2015) Transiently impaired neurogenesis in MPTP mouse model of Parkinson’s disease. Neurotoxicology 50:46–55. CrossRefPubMedGoogle Scholar
  5. 5.
    Khacho M, Slack RS (2017) Mitochondrial activity in the regulation of stem cell self-renewal and differentiation. Curr Opin Cell Biol 49:1–8. CrossRefPubMedGoogle Scholar
  6. 6.
    Mir S, Cai W, Carlson SW, Saatman KE, Andres DA (2017) IGF-1 mediated neurogenesis involves a novel RIT1/Akt/Sox2 cascade. Sci Rep 7(1):3283. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Jang S, Kim H, Jeong J, Lee SK, Kim EW, Park M, Kim CH, Lee JE et al (2016) Blunted response of hippocampal AMPK associated with reduced neurogenesis in older versus younger mice. Prog Neuro-Psychopharmacol Biol Psychiatry 71:57–65. CrossRefGoogle Scholar
  8. 8.
    Lu KT, Huang TC, Wang JY, You YS, Chou JL, Chan MW, Wo PY, Amstislavskaya TG et al (2015) NKCC1 mediates traumatic brain injury-induced hippocampal neurogenesis through CREB phosphorylation and HIF-1alpha expression. Pflugers Arch 467(8):1651–1661. CrossRefPubMedGoogle Scholar
  9. 9.
    Ahmad Waza A, Ahmad Bhat S, Ul Hussain M, Ganai BA (2017) Connexin 43 and ATP-sensitive potassium channels crosstalk: a missing link in hypoxia/ischemia stress. Cell Tissue Res 371:213–222. CrossRefPubMedGoogle Scholar
  10. 10.
    Shen KZ, Wu YN, Munhall AC, Johnson SW (2016) AMP kinase regulates ligand-gated K-ATP channels in substantia nigra dopamine neurons. Neuroscience 330:219–228. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Knowlton CJ, Kutterer S, Roeper J, Canavier CC (2017) Calcium dynamics control K-ATP channel mediated bursting in substantia nigra dopamine neurons: a combined experimental and modeling study. J Neurophysiol.
  12. 12.
    Duda J, Potschke C, Liss B (2016) Converging roles of ion channels, calcium, metabolic stress, and activity pattern of Substantia nigra dopaminergic neurons in health and Parkinson’s disease. J Neurochem 139(Suppl 1):156–178. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wang S, Hu LF, Yang Y, Ding JH, Hu G (2005) Studies of ATP-sensitive potassium channels on 6-hydroxydopamine and haloperidol rat models of Parkinson’s disease: implications for treating Parkinson’s disease? Neuropharmacology 48(7):984–992. CrossRefPubMedGoogle Scholar
  14. 14.
    Wu J, Hu J, Chen YP, Takeo T, Suga S, Dechon J, Liu Q, Yang KC et al (2006) Iptakalim modulates ATP-sensitive K(+) channels in dopamine neurons from rat substantia nigra pars compacta. J Pharmacol Exp Ther 319(1):155–164. CrossRefPubMedGoogle Scholar
  15. 15.
    Yang JZ, Huang X, Zhao FF, Xu Q, Hu G (2012) Iptakalim enhances adult mouse hippocampal neurogenesis via opening Kir6.1-composed K-ATP channels expressed in neural stem cells. CNS Neurosci Ther 18(9):737–744. CrossRefPubMedGoogle Scholar
  16. 16.
    Du XX, Qin K, Jiao Q, Xie JX, Jiang H (2016) [Advances in the association of ATP-sensitive potassium channels and Parkinson’s disease]. Sheng Li Xue Bao 68(5):644–648PubMedGoogle Scholar
  17. 17.
    Wu YN, Shen KZ, Johnson SW (2017) Differential actions of AMP kinase on ATP-sensitive K(+) currents in ventral tegmental area and substantia nigra zona compacta neurons. Eur J Neurosci 46(11):2746–2753. CrossRefPubMedGoogle Scholar
  18. 18.
    Przedborski S, Tieu K, Perier C, Vila M (2004) MPTP as a mitochondrial neurotoxic model of Parkinson’s disease. J Bioenerg Biomembr 36(4):375–379. CrossRefPubMedGoogle Scholar
  19. 19.
    Petroske E, Meredith GE, Callen S, Totterdell S, Lau YS (2001) Mouse model of parkinsonism: a comparison between subacute MPTP and chronic MPTP/probenecid treatment. Neuroscience 106(3):589–601CrossRefPubMedGoogle Scholar
  20. 20.
    Sairanen M, Lucas G, Ernfors P, Castren M, Castren E (2005) Brain-derived neurotrophic factor and antidepressant drugs have different but coordinated effects on neuronal turnover, proliferation, and survival in the adult dentate gyrus. J Neurosci 25(5):1089–1094. CrossRefPubMedGoogle Scholar
  21. 21.
    Castelo-Branco G, Wagner J, Rodriguez FJ, Kele J, Sousa K, Rawal N, Pasolli HA, Fuchs E et al (2003) Differential regulation of midbrain dopaminergic neuron development by Wnt-1, Wnt-3a, and Wnt-5a. Proc Natl Acad Sci U S A 100(22):12747–12752. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Spathis AD, Asvos X, Ziavra D, Karampelas T, Topouzis S, Cournia Z, Qing X, Alexakos P et al (2017) Nurr1:RXRalpha heterodimer activation as monotherapy for Parkinson’s disease. Proc Natl Acad Sci U S A 114(15):3999–4004. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Huang P, Ye B, Yang Y, Shi J, Zhao H (2015) MicroRNA-181 functions as a tumor suppressor in non-small cell lung cancer (NSCLC) by targeting Bcl-2. Tumour Biol 36(5):3381–3387. CrossRefPubMedGoogle Scholar
  24. 24.
    Gould E (2007) How widespread is adult neurogenesis in mammals? Nat Rev Neurosci 8(6):481–488. CrossRefPubMedGoogle Scholar
  25. 25.
    Liss B, Haeckel O, Wildmann J, Miki T, Seino S, Roeper J (2005) K-ATP channels promote the differential degeneration of dopaminergic midbrain neurons. Nat Neurosci 8(12):1742–1751. CrossRefPubMedGoogle Scholar
  26. 26.
    Jeon H, Ryu S, Kim D, Koo S, Ha KT, Kim S (2017) Acupuncture stimulation at GB34 restores MPTP-induced neurogenesis impairment in the subventricular zone of mice. Evid Based Complement Alternat Med 2017:3971675. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    L'Episcopo F, Serapide MF, Tirolo C, Testa N, Caniglia S, Morale MC, Pluchino S, Marchetti B (2011) A Wnt1 regulated frizzled-1/beta-catenin signaling pathway as a candidate regulatory circuit controlling mesencephalic dopaminergic neuron-astrocyte crosstalk: therapeutical relevance for neuron survival and neuroprotection. Mol Neurodegener 6:49. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Maxwell SL, Ho HY, Kuehner E, Zhao S, Li M (2005) Pitx3 regulates tyrosine hydroxylase expression in the substantia nigra and identifies a subgroup of mesencephalic dopaminergic progenitor neurons during mouse development. Dev Biol 282(2):467–479. CrossRefPubMedGoogle Scholar
  29. 29.
    Bissonette GB, Roesch MR (2016) Development and function of the midbrain dopamine system: what we know and what we need to. Genes Brain Behav 15(1):62–73. CrossRefPubMedGoogle Scholar
  30. 30.
    Leggio L, Vivarelli S, L'Episcopo F, Tirolo C, Caniglia S, Testa N, Marchetti B, Iraci N (2017) microRNAs in Parkinson’s disease: from pathogenesis to novel diagnostic and therapeutic approaches. Int J Mol Sci 18(12).
  31. 31.
    Banelli B, Forlani A, Allemanni G, Morabito A, Pistillo MP, Romani M (2017) MicroRNA in glioblastoma: an overview. Int J Genomics 2017:7639084. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Junn E, Mouradian MM (2012) MicroRNAs in neurodegenerative diseases and their therapeutic potential. Pharmacol Ther 133(2):142–150. CrossRefPubMedGoogle Scholar
  33. 33.
    Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E, Hannon G, Abeliovich A (2007) A microRNA feedback circuit in midbrain dopamine neurons. Science 317(5842):1220–1224. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Wang Y, Li M, Xu L, Liu J, Wang D, Li Q, Wang L, Li P et al (2017) Expression of Bcl-2 and microRNAs in cardiac tissues of patients with dilated cardiomyopathy. Mol Med Rep 15(1):359–365. CrossRefPubMedGoogle Scholar
  35. 35.
    Qu Y, Zhang Q, Cai X, Li F, Ma Z, Xu M, Lu L (2017) Exosomes derived from miR-181-5p-modified adipose-derived mesenchymal stem cells prevent liver fibrosis via autophagy activation. J Cell Mol Med 21(10):2491–2502. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018
corrected publication April/2018

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory of Neurodegeneration, Department of PharmacologyNanjing Medical UniversityNanjingChina
  2. 2.Department of PharmacologyNanjing University of Chinese MedicineNanjingChina
  3. 3.Neuroprotective Drug Discovery Key Laboratory, Department of PharmacologyNanjing Medical UniversityNanjingChina
  4. 4.Department of Clinical Pharmacy, The First People’s HospitalShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations