Skip to main content

Advertisement

Log in

Evidence for Compromised Insulin Signaling and Neuronal Vulnerability in Experimental Model of Sporadic Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Evidence from animal studies categorizes sporadic Alzheimer’s disease (sAD) as a metabolic syndrome with accompanying cognitive deficits. Given that glial cells act as “silent partners” to neurons by providing trophic support and defense, the present study investigated the role of glia in sAD pathology. A streptozotocin (STZ)-induced glial-neuronal co-culture model of sAD was used to study the metabolic status of the two cell types. Real time RT-PCR and Western blotting results indicated that amyloid precursor protein (APP) and β-secretase (BACE1) were highly expressed in co-cultured neurons than in monocultures. Increased amyloidogenesis was accompanied by decreased expression of mediators in insulin signaling pathway that included insulin receptor (IR), insulin receptor substrate 2 (IRS2), insulin-like growth factor 2 (IGF2), insulin-like growth factor 1 receptor (IGF1R), total-glycogen synthase kinase 3β (t-GSK3β), and phosphorylated-GSK3βser9 (p-GSK3βser9), suggesting that neuronal cells are more prone to metabolic variability when cultured in the presence of glial cells. Findings from the sAD model induced by intracerebroventricular (ICV) injection of STZ revealed that increased amyloid beta (Aβ) load in the hippocampus was potentially responsible for the hyperphosphorylation of tau at ser396. Furthermore, impaired cognitive functions and decreased dendritic spine density and axonal thinning in CA1 region of hippocampus were associated with decreased IR and p-GSK3βser9/t-GSK3β expression. Taken together, the present study provides evidence that glia mediated response and insulin signaling defects drive pathological changes in sAD and represent potential targets for delaying sAD progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

APP:

amyloid precursor protein

ADAM 10:

a Disintegrin and metalloproteinase domain-containing protein 10

Aβ:

amyloid beta

aCSF:

artificial cerebrospinal fluid

AD:

Alzheimer’s disease

BACE1:

β-secretase 

BBB:

blood-brain barrier

DMEM:

Dulbecco’s modified Eagle’s medium

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

GOD-POD:

glucose oxidase-peroxidise

GLUT1:

glucose transporter 1

GLUT3:

glucose transporter 3

ICV:

intracerebroventricular

IGF1:

insulin like growth factor1

IGF 2:

insulin like growth factor2

IGF1R:

insulin like growth factor 1 receptor

insr:

insulin receptor gene

IP:

intraperitoneal

IR:

insulin receptor

IRBS:

insulin-resistant brain state

IRS1:

insulin receptor substrate 1

IRS2:

insulin receptor substrate2

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

MWM:

Morris water maze

NBDG:

2-(N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl, amino)-2-deoxyglucose)

NFTs:

neuro-fibrillary tangles

NGF:

nerve growth factor

p-GSK3βser9 :

phospho-glycogen synthase kinase 3 β

PHF:

paired helical filament

PKC:

protein kinase C

RPMI:

Roswell Park Memorial Institute

sAD:

sporadic Alzheimer’s disease

SLC2A1:

facilitated glucose transporter member 1

SLC2A3:

facilitated glucose transporter member 3

STZ:

streptozotocin

T3D:

type 3 diabetes

t-GSK3β:

total-glycogen synthase kinase3β

References

  1. Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E (2011) Alzheimer’s disease. Lancet 377:1019–1031

    Article  Google Scholar 

  2. Mancuso M, Calsolaro V, Orsucci D, Carlesi C, Choub A, Piazza S, Siciliano G (2009) Mitochondria, cognitive impairment, and Alzheimer’s disease. Int J Alzheimers Dis 2009:1–8

    Article  Google Scholar 

  3. Holtzman DM, Morris JC, Goate AM (2011) Alzheimer’s disease: the challenge of the second century. Sci Transl Med 3:77

    Google Scholar 

  4. Tönnies E, Trushina E (2017) Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J Alzheimers Dis 57:1105–1121

    Article  Google Scholar 

  5. Bekris LM, Yu C-E, Bird TD, Tsuang DW (2010) Genetics of Alzheimer disease. J Geriatr Psychiatry Neurol 23:213–227

    Article  Google Scholar 

  6. Talbot K, Wang H-Y, Kazi H, Han LY, Bakshi KP, Stucky A, Fuino RL, Kawaguchi KR et al (2012) Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest 122:1316–1338

    Article  CAS  Google Scholar 

  7. Craft S, Watson GS (2004) Insulin and neurodegenerative disease: shared and specific mechanisms. Lancet Neurol 3:169–178

    Article  CAS  Google Scholar 

  8. Hoyer S (2002) The aging brain. Changes in the neuronal insulin/insulin receptor signal transduction cascade trigger late-onset sporadic Alzheimer disease (SAD). A mini-review. J Neural Transm 109:991–1002

    Article  CAS  Google Scholar 

  9. Sandhir R, Gupta S (2015) Molecular and biochemical trajectories from diabetes to Alzheimer’s disease: a critical appraisal. World J Diabetes 6:1223–1242. https://doi.org/10.4239/wjd.v6.i12.1223

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pardridge WM (2012) Drug transport across the blood–brain barrier. J Cereb Blood Flow Metab 32:1959–1972

    Article  CAS  Google Scholar 

  11. De Felice FG, Lourenco MV, Ferreira ST (2014) How does brain insulin resistance develop in Alzheimer’s disease? Alzheimers Dement 10:S26–S32

    Article  Google Scholar 

  12. Tokutake T, Kasuga K, Yajima R, Sekine Y, Tezuka T, Nishizawa M, Ikeuchi T (2012) Hyperphosphorylation of Tau induced by naturally secreted amyloid-β at nanomolar concentrations is modulated by insulin-dependent Akt-GSK3β signaling pathway. J Biol Chem 287:35222–35233

    Article  CAS  Google Scholar 

  13. An Y, Varma V, Varma S et al (2017) Evidence for brain glucose dysregulation in Alzheimer’s disease. Alzheimers Dement. https://doi.org/10.1016/j.jalz.2017.09.011

    Article  Google Scholar 

  14. Watson GS, Craft S (2003) The role of insulin resistance in the pathogenesis of Alzheimer’s disease: implications for treatment. CNS Drugs 17:27–45

    Article  CAS  Google Scholar 

  15. Rivera E, Goldin A, Fulmer N et al (2005) Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer’s disease: link to brain reductions in acetylcholine. J Alzheimers Dis 8(3):247–268

    Article  CAS  Google Scholar 

  16. Steen E, Terry BM, Rivera EJ et al (2005) Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease--is this type 3 diabetes? J Alzheimers Dis 7(1):63–80

    Article  CAS  Google Scholar 

  17. Hölscher C, Li L (2010) New roles for insulin-like hormones in neuronal signalling and protection: new hopes for novel treatments of Alzheimer’s disease? Neurobiol Aging 31(9):1495–1502

    Article  Google Scholar 

  18. K1 T, Wang HY, Kazi H et al (2012) Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest (4):1316–1338

  19. de la Monte SM (2012) Brain insulin resistance and deficiency as therapeutic targets in Alzheimer’s disease. Curr Alzheimer Res 9(1):35–66

    Article  Google Scholar 

  20. Deng Y, Li B, Liu Y et al (2009) Dysregulation of insulin signaling, glucose transporters, O-GlcNAcylation, and phosphorylation of tau and neurofilaments in the brain implication for alzheimer’s disease. Am J Pathol 175(5):2089–2098

    Article  CAS  Google Scholar 

  21. Shingo AS, Kanabayashi T, Kito S, Murase T (2013) Intracerebroventricular administration of an insulin analogue recovers STZ-induced cognitive decline in rats. Behav Brain Res 241:105–111

    Article  CAS  Google Scholar 

  22. de la Monte, Wands JR (2008) Alzheimer’s disease is type 3 diabetes–evidence reviewed. J Diabetes Sci Technol 26:1101–1113

    Article  Google Scholar 

  23. Salkovic-Petrisic M, Knezovic A et al (2013) What have we learned from the streptozotocin-induced animal model of sporadic Alzheimer’s disease, about the therapeutic strategies in Alzheimer’s research. J Neural Transm 1:233–252

    Article  Google Scholar 

  24. Hoyer S, Müller D, Plaschke K (1994) Desensitization of brain insulin receptor. Effect on glucose/energy and related metabolism. J Neural Transm Suppl 44:259–268

    CAS  PubMed  Google Scholar 

  25. Mehla J, Pahuja M, Gupta YK (2013) Streptozotocin-induced sporadic Alzheimer’s disease: selection of appropriate dose. J Alzheimers Dis 33(1):17–21

    Article  CAS  Google Scholar 

  26. Trinder P (1969) Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. J Clin Pathol 22:158–161

    Article  CAS  Google Scholar 

  27. Wang X, Michaelis ML, Michaelis EK (2010) Functional genomics of brain aging and Alzheimer’s disease: focus on selective neuronal vulnerability. Curr Genomics 11(8):618–633

    Article  Google Scholar 

  28. Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1:848–858

    Article  Google Scholar 

  29. Rajamohamedsait HB, Sigurdsson EM (2012) Histological staining of amyloid and pre-amyloid peptides and proteins in mouse tissue. Methods Mol Biol 849:411–424. https://doi.org/10.1007/978-1-61779-551-0_28

    Article  CAS  PubMed  Google Scholar 

  30. Guntern R, Bouras C, Hof PR, Vallet PG (1992) An improved thioflavine S method for staining neurofibrillary tangles and senile plaques in Alzheimer’s disease. Experientia 48:8–10

    Article  CAS  Google Scholar 

  31. Fischer AH, Jacobson KA, Rose J, Zeller R (2008) Hematoxylin and eosin staining of tissue and cell sections. Cold Spring Harb Protoc 2008:prot4986

    Google Scholar 

  32. Zaqout S, Kaindl AM (2016) Golgi-cox staining step by step. Front Neuroanat 10:38

    Article  Google Scholar 

  33. Fath T, Eidenmüller J, Brandt R (2002) Tau-mediated cytotoxicity in a pseudohyperphosphorylation model of Alzheimer's disease. J Neurosci 22:9733–9741

    Article  CAS  Google Scholar 

  34. Wang SS-S, Rymer DL, Good TA (2001) Reduction in cholesterol and sialic acid content protects cells from the toxic effects of β-amyloid peptides. J Biol Chem 276:42027–42034

    Article  CAS  Google Scholar 

  35. Zou C, Wang Y, Shen Z (2005) 2-NBDG as a fluorescent indicator for direct glucose uptake measurement. J Biochem Biophys Methods 64:207–215

    Article  CAS  Google Scholar 

  36. Yuan X, Zhang S, Sun M et al (2013) Putative DHHC-cysteine-rich domain S-acyltransferase in plants. PLoS One 8(10):75985

    Article  Google Scholar 

  37. Bussière T, Bard F, Barbour R, Grajeda H, Guido T, Khan K, Schenk D, Games D et al (2004) Morphological characterization of Thioflavin-S-positive amyloid plaques in transgenic Alzheimer mice and effect of passive Abeta immunotherapy on their clearance. Am J Pathol 165:987–995

    Article  Google Scholar 

  38. Kluve-Beckerman B, Liepnieks JJ, Wang L, Benson MD (1999) A cell culture system for the study of amyloid pathogenesis. Amyloid formation by peritoneal macrophages cultured with recombinant serum amyloid A. Am J Pathol 155:123–133

    Article  CAS  Google Scholar 

  39. de la Monte SM, Wands JR (2008) Alzheimer’s disease is type 3 diabetes-evidence reviewed. J Diabetes Sci Technol 2:1101–1113

    Article  Google Scholar 

  40. Cohen-Pfeffer JL, Gururangan S, Lester T et al (2016) Intracerebroventricular delivery as a safe, long-term route of drug administration. Pediatr Neurol 67:23–35

    Article  Google Scholar 

  41. de la Monte SM, Longato L, Tong M, Wands JR (2009) Insulin resistance and neurodegeneration: Roles of obesity, type 2 diabetes mellitus and non-alcoholic steatohepatitis. Curr Opin Investig Drugs 10:1049–1060

    PubMed  PubMed Central  Google Scholar 

  42. Velazquez R, Tran A, Ishimwe E, Denner L, Dave N, Oddo S, Dineley KT (2017) Central insulin dysregulation and energy dyshomeostasis in two mouse models of Alzheimer’s disease. Neurobiol Aging 58:1–13

    Article  CAS  Google Scholar 

  43. Leszek J, Trypka E, Tarasov VV et al (2017) Type 3 diabetes mellitus: A novel implication of Alzheimers disease. Curr Top Med Chem 17:1331–1335

    Article  CAS  Google Scholar 

  44. Kleinridders A (2016) Deciphering brain insulin receptor and insulin-like growth factor 1 receptor Signalling. J Neuroendocrinol, 28

  45. Knezovic A, Loncar A, Homolak J, Smailovic U, Osmanovic Barilar J, Ganoci L, Bozina N, Riederer P et al (2017) Rat brain glucose transporter-2, insulin receptor and glial expression are acute targets of intracerebroventricular streptozotocin: risk factors for sporadic Alzheimer’s disease? J Neural Transm 124:695–708

    Article  CAS  Google Scholar 

  46. Gasparini L, Netzer WJ, Greengard P, Xu H (2002) Does insulin dysfunction play a role in Alzheimer’s disease? Trends Pharmacol Sci 23:288–293

    Article  CAS  Google Scholar 

  47. Ghasemi R, Haeri A, Dargahi L, Mohamed Z, Ahmadiani A (2013) Insulin in the brain: sources, localization and functions. Mol Neurobiol 47:145–171

    Article  CAS  Google Scholar 

  48. Havrankova J, Schmechel D, Roth J, Brownstein M (1978) Identification of insulin in rat brain. Proc Natl Acad Sci 75:5737–5741

    Article  CAS  Google Scholar 

  49. Gray SM, Meijer RI, Barrett EJ (2014) Insulin regulates brain function, but how does it get there? Diabetes 63:3992–3997

    Article  CAS  Google Scholar 

  50. Zhao W, Chen H, Xu H, Moore E, Meiri N, Quon MJ, Alkon DL (1999) Brain insulin receptors and spatial memory. Correlated changes in gene expression, tyrosine phosphorylation, and signaling molecules in the hippocampus of water maze trained rats. J Biol Chem 274:34893–34902

    Article  CAS  Google Scholar 

  51. De Felice FG (2013) Alzheimer’s disease and insulin resistance: translating basic science into clinical applications. J Clin Invest 123:531–539

    Article  Google Scholar 

  52. Moloney AM, Griffin RJ, Timmons S, O’Connor R, Ravid R, O’Neill C (2010) Defects in IGF-1 receptor, insulin receptor and IRS 1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol Aging 31:224–243

    Article  CAS  Google Scholar 

  53. Jahangir Z, Ahmad W, Shabbiri K (2014) Alternate phosphorylation/O-GlcNAc modification on human insulin IRSs: a road towards impaired insulin signaling in Alzheimer and diabetes. Adv Bioinforma 2014:324753

    Article  Google Scholar 

  54. Malito E, Hulse RE, Tang W-J (2008) Amyloid beta-degrading cryptidases: insulin degrading enzyme, presequence peptidase, and neprilysin. Cell Mol Life Sci 65:2574–2585

    Article  CAS  Google Scholar 

  55. Bates KA, Verdile G, Li Q-X, Ames D, Hudson P, Masters CL, Martins RN (2009) Clearance mechanisms of Alzheimer’s amyloid-β peptide: implications for therapeutic design and diagnostic tests. Mol Psychiatry 14:469–486

    Article  CAS  Google Scholar 

  56. Rammes G, Mattusch C, Wulff M, Seeser F, Kreuzer M, Zhu K, Deussing JM, Herms J et al (2017) Involvement of GluN2B subunit containing N-methyl-d-aspartate (NMDA) receptors in mediating the acute and chronic synaptotoxic effects of oligomeric amyloid-beta (Aβ) in murine models of Alzheimer’s disease (AD). Neuropharmacology 123:100–115

    Article  CAS  Google Scholar 

  57. Grieb P (2016) Intracerebroventricular streptozotocin injections as a model of Alzheimer’s disease: in search of a relevant mechanism. Mol Neurobiol 53:1741–1752

    Article  CAS  Google Scholar 

  58. Saxena S, Caroni P (2011) Selective neuronal vulnerability in neurodegenerative diseases: from stressor thresholds to degeneration. Neuron 71:35–48

    Article  CAS  Google Scholar 

  59. Bandyopadhyay B, Li G, Yin H, Kuret J (2007) Tau aggregation and toxicity in a cell culture model of tauopathy. J Biol Chem 282:16454–16464

    Article  CAS  Google Scholar 

  60. Evans DB, Rank KB, Bhattacharya K, Thomsen DR, Gurney ME, Sharma SK (2000) Tau phosphorylation at serine 396 and serine 404 by human recombinant tau protein kinase II inhibits Tau’s ability to promote microtubule assembly. J Biol Chem 275:24977–24983

    Article  CAS  Google Scholar 

  61. Umeda T, Tomiyama T, Kitajima E, Idomoto T, Nomura S, Lambert MP, Klein WL, Mori H (2012) Hypercholesterolemia accelerates intraneuronal accumulation of Aβ oligomers resulting in memory impairment in Alzheimer’s disease model mice. Life Sci 91(23–24):1169–1176

    Article  CAS  Google Scholar 

  62. Hooper C, Killick R, Lovestone S (2008) The GSK3 hypothesis of Alzheimer’s disease. J Neurochem 104:1433–1439

    Article  CAS  Google Scholar 

  63. García-Cáceres C, Quarta C, Varela L, Gao Y, Gruber T, Legutko B, Jastroch M, Johansson P et al (2016) Astrocytic insulin signaling couples brain glucose uptake with nutrient availability. Cell 166:867–880

    Article  Google Scholar 

  64. Cifelli JL, Dozier L, Chung TS, Patrick GN, Yang J (2016) Benzothiazole amphiphiles promote the formation of dendritic spines in primary hippocampal neurons. J Biol Chem 291:11981–11992

    Article  CAS  Google Scholar 

  65. Borbély E, Horváth J, Furdan S et al (2014) Simultaneous changes of spatial memory and spine density after intrahippocampal administration of fibrillar aβ1-42 to the rat brain. Biomed Res Int 2014:345305

    Article  Google Scholar 

  66. Stockhorst U, de Fries D, Steingrueber H-J, Scherbaum WA (2004) Insulin and the CNS: effects on food intake, memory, and endocrine parameters and the role of intranasal insulin administration in humans. Physiol Behav 83:47–54

    Article  CAS  Google Scholar 

  67. Ruud J, Steculorum SM, Brüninga JC (2017) Neuronal control of peripheral insulin sensitivity and glucose metabolism. Nat Commun 8:15259

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by UGC-BSR fellowship program (Ref. No. F.4-1/2006 [BSR]/7-209/2009 [BSR] and UGC-SAP DRS phase II program (Ref. No. F.4-7/2015/DRS-II (SAP-II). The authors also acknowledge the finacial support from the DST under PURSE (Phase II) grant. The authors thank Ms. Komal Taneja for her support with Golgi-Cox staining.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajat Sandhir.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

ESM 1

(PDF 458 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Yadav, K., Mantri, S.S. et al. Evidence for Compromised Insulin Signaling and Neuronal Vulnerability in Experimental Model of Sporadic Alzheimer’s Disease. Mol Neurobiol 55, 8916–8935 (2018). https://doi.org/10.1007/s12035-018-0985-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-0985-0

Keywords

Navigation