Skip to main content
Log in

Physiological Concentration of Prostaglandin E2 Exerts Anti-inflammatory Effects by Inhibiting Microglial Production of Superoxide Through a Novel Pathway

  • Original Paper
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

This study investigated the physiological regulation of brain immune homeostasis in rat primary neuron-glial cultures by sub-nanomolar concentrations of prostaglandin E2 (PGE2). We demonstrated that 0.01 to 10 nM PGE2 protected dopaminergic neurons against LPS-induced neurotoxicity through a reduction of microglial release of pro-inflammatory factors in a dose-dependent manner. Mechanistically, neuroprotective effects elicited by PGE2 were mediated by the inhibition of microglial NOX2, a major superoxide-producing enzyme. This conclusion was supported by (1) the close relationship between inhibition of superoxide and PGE2-induced neuroprotective effects; (2) the mediation of PGE2-induced reduction of superoxide and neuroprotection via direct inhibition of the catalytic subunit of NOX2, gp91phox, rather than through the inhibition of conventional prostaglandin E2 receptors; and (3) abolishment of the neuroprotective effect of PGE2 in NOX2-deficient cultures. In summary, this study revealed a potential physiological role of PGE2 in maintaining brain immune homeostasis and protecting neurons via an EP receptor-independent mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kalinski P (2012) Regulation of immune responses by prostaglandin E2. J Immunol 188(1):21–28. https://doi.org/10.4049/jimmunol.1101029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. O’Banion MK (2010) Prostaglandin E2 synthases in neurologic homeostasis and disease. Prostaglandins Other Lipid Mediat 91(3–4):113–117. https://doi.org/10.1016/j.prostaglandins.2009.04.008

    Article  PubMed  CAS  Google Scholar 

  3. Harris SG, Padilla J, Koumas L, Ray D, Phipps RP (2002) Prostaglandins as modulators of immunity. Trends Immunol 23(3):144–150

    Article  PubMed  CAS  Google Scholar 

  4. Minghetti L, Levi G (1998) Microglia as effector cells in brain damage and repair: focus on prostanoids and nitric oxide. Prog Neurobiol 54(1):99–125

    Article  PubMed  CAS  Google Scholar 

  5. Saper CB, Romanovsky AA, Scammell TE (2012) Neural circuitry engaged by prostaglandins during the sickness syndrome. Nat Neurosci 15(8):1088–1095. https://doi.org/10.1038/nn.3159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Cimino PJ, Keene CD, Breyer RM, Montine KS, Montine TJ (2008) Therapeutic targets in prostaglandin E2 signaling for neurologic disease. Curr Med Chem 15(19):1863–1869

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Feng ZH, Wang TG, Li DD, Fung P, Wilson BC, Liu B, Ali SF, Langenbach R et al (2002) Cyclooxygenase-2-deficient mice are resistant to 1-methyl-4-phenyl1, 2, 3, 6-tetrahydropyridine-induced damage of dopaminergic neurons in the substantia nigra. Neurosci Lett 329(3):354–358

    Article  PubMed  CAS  Google Scholar 

  8. Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8(1):57–69. https://doi.org/10.1038/nrn2038

    Article  PubMed  CAS  Google Scholar 

  9. McGeer PL, McGeer EG (2004) Inflammation and neurodegeneration in Parkinson’s disease. Parkinsonism Relat Disord 10(Suppl 1):S3–S7

    Article  PubMed  Google Scholar 

  10. Kunori S, Matsumura S, Okuda-Ashitaka E, Katano T, Audoly LP, Urade Y, Ito S (2011) A novel role of prostaglandin E2 in neuropathic pain: blockade of microglial migration in the spinal cord. Glia 59(2):208–218. https://doi.org/10.1002/glia.21090

    Article  PubMed  Google Scholar 

  11. Liang X, Wang Q, Shi J, Lokteva L, Breyer RM, Montine TJ, Andreasson K (2008) The prostaglandin E2 EP2 receptor accelerates disease progression and inflammation in a model of amyotrophic lateral sclerosis. Ann Neurol 64(3):304–314. https://doi.org/10.1002/ana.21437

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Jiang J, Dingledine R (2013) Prostaglandin receptor EP2 in the crosshairs of anti-inflammation, anti-cancer, and neuroprotection. Trends Pharmacol Sci 34(7):413–423. https://doi.org/10.1016/j.tips.2013.05.003

    Article  PubMed  CAS  Google Scholar 

  13. Quan Y, Jiang J, Dingledine R (2013) EP2 receptor signaling pathways regulate classical activation of microglia. J Biol Chem 288(13):9293–9302. https://doi.org/10.1074/jbc.M113.455816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Milatovic D, Montine TJ, Aschner M (2011) Prostanoid signaling: dual role for prostaglandin E2 in neurotoxicity. Neurotoxicology 32(3):312–319. https://doi.org/10.1016/j.neuro.2011.02.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Scher JU, Pillinger MH (2009) The anti-inflammatory effects of prostaglandins. J Investig Med 57(6):703–708. https://doi.org/10.2310/JIM.0b013e31819aaa76

    Article  PubMed  CAS  Google Scholar 

  16. Kandil HM, Argenzio RA, Sartor RB (1999) Low endogenous prostaglandin E2 predisposes to relapsing inflammation in experimental rat enterocolitis. Dig Dis Sci 44(10):2110–2118

    Article  PubMed  CAS  Google Scholar 

  17. Harizi H, Juzan M, Grosset C, Rashedi M, Gualde N (2001) Dendritic cells issued in vitro from bone marrow produce PGE(2) that contributes to the immunomodulation induced by antigen-presenting cells. Cell Immunol 209(1):19–28. https://doi.org/10.1006/cimm.2001.1785

    Article  PubMed  CAS  Google Scholar 

  18. Zhang J, Rivest S (2001) Anti-inflammatory effects of prostaglandin E2 in the central nervous system in response to brain injury and circulating lipopolysaccharide. J Neurochem 76(3):855–864

    Article  PubMed  CAS  Google Scholar 

  19. Caggiano AO, Kraig RP (1999) Prostaglandin E receptor subtypes in cultured rat microglia and their role in reducing lipopolysaccharide-induced interleukin-1beta production. J Neurochem 72(2):565–575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Minghetti L, Nicolini A, Polazzi E, Creminon C, Maclouf J, Levi G (1997) Inducible nitric oxide synthase expression in activated rat microglial cultures is downregulated by exogenous prostaglandin E2 and by cyclooxygenase inhibitors. Glia 19(2):152–160

    Article  PubMed  CAS  Google Scholar 

  21. Petrova TV, Akama KT, Van Eldik LJ (1999) Selective modulation of BV-2 microglial activation by prostaglandin E(2). Differential effects on endotoxin-stimulated cytokine induction. J Biol Chem 274(40):28823–28827

    Article  PubMed  CAS  Google Scholar 

  22. Aloisi F, Penna G, Cerase J, Menendez Iglesias B, Adorini L (1997) IL-12 production by central nervous system microglia is inhibited by astrocytes. J Immunol 159(4):1604–1612

    PubMed  CAS  Google Scholar 

  23. Montine TJ, Milatovic D, Gupta RC, Valyi-Nagy T, Morrow JD, Breyer RM (2002) Neuronal oxidative damage from activated innate immunity is EP2 receptor-dependent. J Neurochem 83(2):463–470

    Article  PubMed  CAS  Google Scholar 

  24. Liang X, Wang Q, Hand T, Wu L, Breyer RM, Montine TJ, Andreasson K (2005) Deletion of the prostaglandin E2 EP2 receptor reduces oxidative damage and amyloid burden in a model of Alzheimer’s disease. J Neurosci 25(44):10180–10187. https://doi.org/10.1523/JNEUROSCI.3591-05.2005

    Article  PubMed  CAS  Google Scholar 

  25. Bilak M, Wu L, Wang Q, Haughey N, Conant K, St Hillaire C, Andreasson K (2004) PGE2 receptors rescue motor neurons in a model of amyotrophic lateral sclerosis. Ann Neurol 56(2):240–248. https://doi.org/10.1002/ana.20179

    Article  PubMed  CAS  Google Scholar 

  26. Andreasson K (2010) Emerging roles of PGE2 receptors in models of neurological disease. Prostaglandins Other Lipid Mediat 91(3–4):104–112. https://doi.org/10.1016/j.prostaglandins.2009.04.003

    Article  PubMed  CAS  Google Scholar 

  27. Jiang J, Quan Y, Ganesh T, Pouliot WA, Dudek FE, Dingledine R (2013) Inhibition of the prostaglandin receptor EP2 following status epilepticus reduces delayed mortality and brain inflammation. Proc Natl Acad Sci U S A 110(9):3591–3596. https://doi.org/10.1073/pnas.1218498110

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ciceri P, Zhang Y, Shaffer AF, Leahy KM, Woerner MB, Smith WG, Seibert K, Isakson PC (2002) Pharmacology of celecoxib in rat brain after kainate administration. J Pharmacol Exp Ther 302(3):846–852

    Article  PubMed  CAS  Google Scholar 

  29. Golovko MY, Murphy EJ (2008) An improved LC-MS/MS procedure for brain prostanoid analysis using brain fixation with head-focused microwave irradiation and liquid-liquid extraction. J Lipid Res 49(4):893–902. https://doi.org/10.1194/jlr.D700030-JLR200

    Article  PubMed  CAS  Google Scholar 

  30. Sapirstein A, Saito H, Texel SJ, Samad TA, O’Leary E, Bonventre JV (2005) Cytosolic phospholipase A2alpha regulates induction of brain cyclooxygenase-2 in a mouse model of inflammation. Am J Physiol Regul Integr Comp Physiol 288(6):R1774–R1782. https://doi.org/10.1152/ajpregu.00815.2004

    Article  PubMed  CAS  Google Scholar 

  31. Loh JK, Hwang SL, Lieu AS, Huang TY, Howng SL (2002) The alteration of prostaglandin E2 levels in patients with brain tumors before and after tumor removal. J Neuro-Oncol 57(2):147–150

    Article  Google Scholar 

  32. Chang CH, Huang WT, Kao CH, Chen SH, Lin CH (2013) Tetramethylpyrazine decreases hypothalamic glutamate, hydroxyl radicals and prostaglandin-E2 and has antipyretic effects. Inflamm Res 62(5):527–535. https://doi.org/10.1007/s00011-013-0606-3

    Article  PubMed  CAS  Google Scholar 

  33. Huang WT, Niu KC, Chang CK, Lin MT, Chang CP (2008) Curcumin inhibits the increase of glutamate, hydroxyl radicals and PGE2 in the hypothalamus and reduces fever during LPS-induced systemic inflammation in rabbits. Eur J Pharmacol 593(1–3):105–111. https://doi.org/10.1016/j.ejphar.2008.07.017

    Article  PubMed  CAS  Google Scholar 

  34. Chen SH, Oyarzabal EA, Hong JS (2013) Preparation of rodent primary cultures for neuron-glia, mixed glia, enriched microglia, and reconstituted cultures with microglia. Methods Mol Biol 1041:231–240. https://doi.org/10.1007/978-1-62703-520-0_21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Liu B, Hong JS (2003) Primary rat mesencephalic neuron-glia, neuron-enriched, microglia-enriched, and astroglia-enriched cultures. Methods Mol Med 79:387–395

    PubMed  Google Scholar 

  36. Yu L, Quinn MT, Cross AR, Dinauer MC (1998) Gp91(phox) is the heme binding subunit of the superoxide-generating NADPH oxidase. Proc Natl Acad Sci U S A 95(14):7993–7998

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Price MO, McPhail LC, Lambeth JD, Han CH, Knaus UG, Dinauer MC (2002) Creation of a genetic system for analysis of the phagocyte respiratory burst: high-level reconstitution of the NADPH oxidase in a nonhematopoietic system. Blood 99(8):2653–2661

    Article  PubMed  CAS  Google Scholar 

  38. Liu Y, Qin L, Wilson BC, An L, Hong JS, Liu B (2002) Inhibition by naloxone stereoisomers of beta-amyloid peptide (1-42)-induced superoxide production in microglia and degeneration of cortical and mesencephalic neurons. J Pharmacol Exp Ther 302(3):1212–1219. https://doi.org/10.1124/jpet.102.035956

    Article  PubMed  CAS  Google Scholar 

  39. Zhang X, Goncalves R, Mosser DM (2008) The isolation and characterization of murine macrophages. Curr Protoc Immunol Chapter 14:Unit 14 11. https://doi.org/10.1002/0471142735.im1401s83

  40. Zhou H, Zhang F, Chen SH, Zhang D, Wilson B, Hong JS, Gao HM (2012) Rotenone activates phagocyte NADPH oxidase by binding to its membrane subunit gp91phox. Free Radic Biol Med 52(2):303–313. https://doi.org/10.1016/j.freeradbiomed.2011.10.488

    Article  PubMed  CAS  Google Scholar 

  41. Liu B, Du L, Hong J-S (2000) Naloxone protects rat dopaminergic neurons against inflammatory damage through inhibition of microglia activation and superoxide generation. J Pharmacol Exp Ther 293(2):607–617

    PubMed  CAS  Google Scholar 

  42. Tan AS, Berridge MV (2000) Superoxide produced by activated neutrophils efficiently reduces the tetrazolium salt, WST-1 to produce a soluble formazan: a simple colorimetric assay for measuring respiratory burst activation and for screening anti-inflammatory agents. J Immunol Methods 238(1–2):59–68

    Article  PubMed  CAS  Google Scholar 

  43. Romano J, Beni-Adani L, Nissenbaum OL, Brenneman DE, Shohami E, Gozes I (2002) A single administration of the peptide NAP induces long-term protective changes against the consequences of head injury: gene Atlas array analysis. J Mol Neurosci 18(1–2):37–45

    Article  PubMed  CAS  Google Scholar 

  44. Draye JP, Quintart J, Courtoy PJ, Baudhuin P (1987) Relations between plasma membrane and lysosomal membrane. 1. Fate of covalently labelled plasma membrane protein. Eur J Biochem 170(1–2):395–403

    Article  PubMed  CAS  Google Scholar 

  45. Zhang SC, Fedoroff S (1996) Neuron-microglia interactions in vitro. Acta Neuropathol 91(4):385–395

    Article  PubMed  CAS  Google Scholar 

  46. Gebicke-Haerter PJ, Bauer J, Schobert A, Northoff H (1989) Lipopolysaccharide-free conditions in primary astrocyte cultures allow growth and isolation of microglial cells. J Neurosci 9(1):183–194

    Article  PubMed  CAS  Google Scholar 

  47. Talpain E, Armstrong RA, Coleman RA, Vardey CJ (1995) Characterization of the PGE receptor subtype mediating inhibition of superoxide production in human neutrophils. Br J Pharmacol 114(7):1459–1465

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Kanamori Y, Niwa M, Kohno K, Al-Essa LY, Matsuno H, Kozawa O, Uematsu T (1997) Migration of neutrophils from blood to tissue: alteration of modulatory effects of prostanoid on superoxide generation in rabbits and humans. Life Sci 60(16):1407–1417

    Article  PubMed  CAS  Google Scholar 

  49. al-Essa LY, Niwa M, Kohno K, Nozaki M, Tsurumi K (1995) Heterogeneity of circulating and exudated polymorphonuclear leukocytes in superoxide-generating response to cyclic AMP and cyclic AMP-elevating agents. Investigation of the underlying mechanism. Biochem Pharmacol 49(3):315–322

    Article  PubMed  CAS  Google Scholar 

  50. Gao HM, Zhou H, Hong JS (2012) NADPH oxidases: novel therapeutic targets for neurodegenerative diseases. Trends Pharmacol Sci 33(6):295–303. https://doi.org/10.1016/j.tips.2012.03.008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Wang Q, Zhou H, Gao H, Chen SH, Chu CH, Wilson B, Hong JS (2012) Naloxone inhibits immune cell function by suppressing superoxide production through a direct interaction with gp91phox subunit of NADPH oxidase. J Neuroinflammation 9:32. https://doi.org/10.1186/1742-2094-9-32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Yu L, Zhen L, Dinauer MC (1997) Biosynthesis of the phagocyte NADPH oxidase cytochrome b558. Role of heme incorporation and heterodimer formation in maturation and stability of gp91phox and p22phox subunits. J Biol Chem 272(43):27288–27294

    Article  PubMed  CAS  Google Scholar 

  53. Qin L, Liu Y, Wang T, Wei SJ, Block ML, Wilson B, Liu B, Hong JS (2004) NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J Biol Chem 279(2):1415–1421. https://doi.org/10.1074/jbc.M307657200

    Article  PubMed  CAS  Google Scholar 

  54. Wilkinson BL, Landreth GE (2006) The microglial NADPH oxidase complex as a source of oxidative stress in Alzheimer’s disease. J Neuroinflammation 3:30. https://doi.org/10.1186/1742-2094-3-30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Zhang W, Wang T, Qin L, Gao HM, Wilson B, Ali SF, Hong JS, Liu B (2004) Neuroprotective effect of dextromethorphan in the MPTP Parkinson’s disease model: role of NADPH oxidase. FASEB J 18(3):589–591. https://doi.org/10.1096/fj.03-0983fje

    Article  PubMed  CAS  Google Scholar 

  56. Anantharam V, Kaul S, Song C, Kanthasamy A, Kanthasamy AG (2007) Pharmacological inhibition of neuronal NADPH oxidase protects against 1-methyl-4-phenylpyridinium (MPP+)-induced oxidative stress and apoptosis in mesencephalic dopaminergic neuronal cells. Neurotoxicology 28(5):988–997. https://doi.org/10.1016/j.neuro.2007.08.008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences. We thank Drs. Jerry Liu, Hong Li, Peter Egeghy, and David Herr for the critical reading of the manuscript. We thank the animal care team members, Anthony Lockhart, Katrina Loper, and Johnny Green and the members of Fluorescence Microscopy and Imaging Center, Charles J. Tucker and Agnes Janoshazi. The US Environmental Protection Agency has provided administrative review and has approved this paper for publication. The views expressed in this paper are those of the authors and do not necessarily reflect the views of the US Environmental Protection Agency.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shih-Heng Chen or Jau-Shyong Hong.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Supplementary Figure 1

Xanthine/xanthine oxidase (X/XO)-generated superoxide was measured by the reduction of tetrazolium salt, WST-1. Briefly, assays were conducted in the presence of indicated concentrations of PGE2, 0.01 U xanthine oxidase, 50 μM xanthine, 250 μM partially acetylated WST-1 in 50 mM potassium phosphate buffer (pH 7.6) in a 96-well plate (100 μL/well final volume). Superoxide dismutase (SOD) served as a positive control. Xanthine was added to initiate the reaction, and absorbance at 450 nm was continuously monitored for 5 minutes using an SPECTAmax PLUS 384 spectrophotometer. Values are mean ± SEM from three independent experiments, with duplicates. ### P < 0.0001 Bonferroni’s t-test compared to X/XO plus WST-1 group. *** P < 0.0001 Bonferroni’s t-test compared to xanthine plus WST-1 group. (GIF 142 kb)

High resolution image (TIFF 85 kb)

Supplementary Figure 2

Rat primary microglia-enriched cultures were incubated with vehicle, 15 ng/ml of LPS, or indicated concentrations of PGE2 at 37 °C for 30 minutes. After incubation, the cells were lysed, and cAMP levels were determined using a cAMP assay kit. Data are expressed as picomoles cAMP per 1 million cells. Values are mean ± SEM from three independent experiments, with triplicates. *** P < 0.0001. (GIF 149 kb)

High resolution image (TIFF 98 kb)

Supplementary Figure 3

PGE2 and EP receptor agonists share pharmacophore features similar to conventional NOX2 inhibitors such as naloxone and apocynin. Results of the consensus pharmacophore analysis are illustrated by three-dimensional ball-and-stick relationships. The sticks represent the generic structure of 1) the prostaglandin; 2) NOX2 inhibitors (e.g., diphenyleneiodonium, apocynin, and naloxone); and 3) chemical agonists 17-phenyltrinor PGE2, butaprost, and CAY 10598, as ligands for the EP receptor(s). Structures of all molecules were superimposed in order to identify overlapping features. Annotation points for each of the three molecules were automatically detected and placed on relevant atoms and groups (e.g., donors, acceptors, aromatic centers, etc.) using the software Molecular Operating Environment (MOE), and these annotation points were converted into pharmacophore features with non-zero radii. Feature types for the balls include: hydrogen bond acceptor, blue; hydrogen bond acceptor/donor, light pink; hydrophobic centroid, green. The percentage represents how many chemicals share the same feature; and the score refers the radius of the feature. Atom centers must be within this radius to match the feature. The pharmacophore model was developed using ligand rather than crystal structures. (GIF 258 kb)

High resolution image (TIFF 208 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, SH., Sung, YF., Oyarzabal, E.A. et al. Physiological Concentration of Prostaglandin E2 Exerts Anti-inflammatory Effects by Inhibiting Microglial Production of Superoxide Through a Novel Pathway. Mol Neurobiol 55, 8001–8013 (2018). https://doi.org/10.1007/s12035-018-0965-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-0965-4

Keywords

Navigation