Brain Metabolic DNA in Rat Cytoplasm

Article

Abstract

Brain metabolic DNA (BMD) is not involved in cell division or DNA repair but is modulated by memory acquisition, sleep processing, and circadian oscillations. Using routine methods of subcellular fractionation, newly synthesized BMD from male rats is shown to be localized in crude nuclear, mitochondrial, and microsomal fractions and in two fractions of purified nuclei. Sub-fractionation of the mitochondrial fraction indicates the prevalent localization of BMD in free mitochondria and to a lesser degree in synaptosomes and myelin. Cesium density profiles of homogenate, subcellular fractions, and purified nuclei obtained after incorporation periods from 30 min to 4 h indicate that BMD synthesis takes place by reverse transcription in cytoplasmic organelles. Following the acquisition of the double-stranded structure, BMD is transferred to nuclei. Kinetic analyses lasting several weeks highlight the massive BMD turnover in subcellular fractions and purified nuclei and its dependence on age. Data are in agreement with the role of BMD as a temporary information store of cell responses of potential use in comparable forthcoming experiences.

Keywords

Metabolic DNA Brain Synaptosomes Mitochondria Nuclei 

References

  1. 1.
    Reinis S (1972) Autoradiographic study of 3H-thymidine incorporation into brain DNA during learning. Physiol Chem Phys 4(4):391–397PubMedGoogle Scholar
  2. 2.
    Reinis S, Lamble RW (1972) Labeling of brain DNA by 3H-thymidine during learning. Physiol Chem Phys 4(4):335–338PubMedGoogle Scholar
  3. 3.
    Ashapkin VV, Romanov GA, Tushmalova NA, Vanyushin BF (1983) Selective DNA synthesis in the rat brain induced by learning. Biokhimija 48:355–362Google Scholar
  4. 4.
    Scaroni R, Ambrosini MV, Principato GB, Federici F, Ambrosi G, Giuditta A (1983) Synthesis of brain DNA during acquisition of an active avoidance task. Physiol Behav 30(4):577–582.  https://doi.org/10.1016/0031-9384(83)90224-X CrossRefPubMedGoogle Scholar
  5. 5.
    Giuditta A, Perrone Capano C, D'Onofrio G, Toniatti C, Menna T, Hydèn H (1986) Synthesis of rat brain DNA during acquisition of an appetitive task. Pharmacol Biochem Behav 25(3):651–658.  https://doi.org/10.1016/0091-3057(86)90155-3 CrossRefPubMedGoogle Scholar
  6. 6.
    Giuditta A, Ambrosini MV, Scaroni R, Chiurulla C, Sadile A (1985) Effect of sleep on cerebral DNA synthesized during shuttle-box avoidance training. Physiol Behav 34(5):769–778.  https://doi.org/10.1016/0031-9384(85)90376-2 CrossRefPubMedGoogle Scholar
  7. 7.
    Langella M, Colarieti L, Ambrosini MV, Giuditta A (1992) The sequential hypothesis of sleep function. IV. A correlative analysis of sleep variables in learning and nonlearning rats. Physiol Behav 51(2):227–238.  https://doi.org/10.1016/0031-9384(92)90135-O CrossRefPubMedGoogle Scholar
  8. 8.
    Grassi Zucconi G, Menichini E, Castigli E, Belia S, Giuditta A (1988a) Circadian oscillations of DNA synthesis in rat brain. Brain Res 447:253–261CrossRefPubMedGoogle Scholar
  9. 9.
    Grassi Zucconi G, Carandente F, Menichini E, Belia S, Giuditta A (1988b) Circadian rhythms of DNA content in brain and kidney: effects of environmental stimulation. Chronobiologia 15:195–204PubMedGoogle Scholar
  10. 10.
    Grassi Zucconi G, Crognale MC, Bassetti MA, Giuditta A (1990) Environmental stimuli modulate the circadian rhythm of (3H-methyl) thymidine incorporation into brain DNA of male rats. Behav Brain Res 41(2):103–110.  https://doi.org/10.1016/0166-4328(90)90146-6 CrossRefGoogle Scholar
  11. 11.
    Giuditta A (1983) Role of DNA in brain activity. In: Lajtha A (ed) Handbook of neurochemistry, vol 5, 2nd edn. Plenum Press, New York, pp. 251–276CrossRefGoogle Scholar
  12. 12.
    Giuditta A, Grassi-Zucconi G, Sadile AG (2017) Brain metabolic DNA in memory processing and genome turnover. Rev Neurosci 28:21–30CrossRefPubMedGoogle Scholar
  13. 13.
    Pelc SR (1964) Labelling of DNA and cell division in so called non-dividing tissues. J Cell Biol 22:21–28CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Pelc SR (1968a) Turnover of DNA and function. Nature 219:162–l63CrossRefPubMedGoogle Scholar
  15. 15.
    Pelc SR (1968b) Biological implications of DNA-turnover in higher organisms. Acta Histochem Suppl 8:441–452Google Scholar
  16. 16.
    Pelc SR (1972) Metabolic DNA in ciliated protozoa, salivary gland chromosomes, and mammalian cells. Int Rev Cytol 32:327–355.  https://doi.org/10.1016/S0074-7696(08)60344-7 CrossRefPubMedGoogle Scholar
  17. 17.
    Roels H (1966) Metabolic’ DNA: a cytochemical study. Int Rev Cytol 19:1–34.  https://doi.org/10.1016/S0074-7696(08)60563-X CrossRefPubMedGoogle Scholar
  18. 18.
    Stroun M, Charles P, Anker P, Pelc SR (1967) Metabolic DNA in heart and skeletal muscle and in the intestine of mice. Nature 216(5116):716–717.  https://doi.org/10.1038/216716a0 CrossRefPubMedGoogle Scholar
  19. 19.
    Gahan PB, Anker P, Stroun M (2008) Metabolic DNA as the origin of spontaneously released DNA? Ann N Y Acad Sci 1137:7–17CrossRefPubMedGoogle Scholar
  20. 20.
    Perrone Capano C, D'Onofrio G, Giuditta A (1982) DNA turnover in rat cerebral cortex. J Neurochem 38(1):52–56.  https://doi.org/10.1111/j.1471-4159.1982.tb10852.x CrossRefPubMedGoogle Scholar
  21. 21.
    Watson WE (1965) An autoradiographic study of the incorporation of nucleic-acid precursors by neurones and glia during nerve regeneration. J Physiol Lond 180(4):741–753.  https://doi.org/10.1113/jphysiol.1965.sp007728 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Rutigliano B, Giuditta A (2015) The unexpected recovery of misplaced data on brain metabolic DNA. Rend Acc Sci fis mat. LXXXII 99-106Google Scholar
  23. 23.
    Giuditta A, Rutigliano B, Casola L, Romano M (1972) Biosynthesis of RNA in two nuclear classes separated from rat cerebral cortex. Brain Res 46:313–328.  https://doi.org/10.1016/0006-8993(72)90022-4 CrossRefPubMedGoogle Scholar
  24. 24.
    Burton K (1956) A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J 62(2):315–323.  https://doi.org/10.1042/bj0620315 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Salganik RI, Parvez H, Tomson VP, Shumskaya IA (1983) Probable role of reverse transcription in learning: correlation between hippocampal RNA-dependent DNA synthesis learning ability in rats. Neurosci Lett 36(3):317–322.  https://doi.org/10.1016/0304-3940(83)90019-8 CrossRefPubMedGoogle Scholar
  26. 26.
    Sung SC (1968) Deoxyribonucleases from rat brain. J Neurochem 15(6):477–481.  https://doi.org/10.1111/j.1471-4159.1968.tb08944.x CrossRefPubMedGoogle Scholar
  27. 27.
    Eyman M, Cefaliello C, Ferrara E et al (2007) Local synthesis of axonal and presynaptic RNA in squid model systems. Eur J Neurosci 25:341–350CrossRefPubMedGoogle Scholar
  28. 28.
    Crispino M, Chun JT, Cefaliello C, Perrone Capano C, Giuditta A (2014) Local gene expression in nerve endings. Dev Neurobiol 74(3):279–291.  https://doi.org/10.1002/dneu.22109 CrossRefPubMedGoogle Scholar
  29. 29.
    Hübscher U, Kuenzle CC, Spadari S (1977) Identity of DNA polymerase gamma from synaptosomal mitochondria and rat-brain nuclei. Eur J Biochem 81(2):249–258.  https://doi.org/10.1111/j.1432-1033.1977.tb11946.x CrossRefPubMedGoogle Scholar
  30. 30.
    Cefaliello C, Prisco M, Crispino M and Giuditta A (2015) Newly synthesized DNA in squid nerve terminals. Rend Acc Sc fis mat Napoli. LXXXII:61–64Google Scholar
  31. 31.
    Prisco M, Casalino J, Cefaliello C, Giuditta A (2015) DNA synthesis in mouse brain cytoplasm. Rend Acc Sc fis mat Napoli. LXXXII:149–152Google Scholar
  32. 32.
    Singer T, McConnell MJ, Marchetto MC, Coufal NG, Gage FH (2010) LINE-1 retrotransposons: mediators of somatic variation in neuronal genomes? Trends Neurosci 33(8):345–354.  https://doi.org/10.1016/j.tins.2010.04.001 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Baillie JK, Barnett MW, Upton KR, Gerhardt DJ, Richmond TA, De Sapio F, Brennan PM, Rizzu P et al (2011) Somatic retrotransposition alters the genetic landscape of the human brain. Nature 479(7374):534–537.  https://doi.org/10.1038/nature10531 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Upton KR, Gerhardt DJ, Jesuadian JS, Richardson SR, Sanchez-Luque FJ, Bodea GO, Ewing AD, Salvador-Palomeque C et al (2015) Ubiquitous L1 mosaicism in hippocampal neurons. Cell 161(2):228–239.  https://doi.org/10.1016/j.cell.2015.03.026 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Miwa S, Saretzki G (2017) Telomerase and mTOR in the brain: the mitochondria connection. Neural Regen Res 12(3):358–361.  https://doi.org/10.4103/1673-5374.202922 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Viola-Magni MP (1966) An analysis of DNA loss and synthesis in the rat adrenal medulla nuclei upon cold stimulation. J Cell Biol 30(2):213–225.  https://doi.org/10.1083/jcb.30.2.213 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Tongiani R, Viola-Magni MP (1969) Differences in adrenal medulla nuclear DNA content among rats of different strains following intermittent exposure to cold. J Cell Biol 42(2):452–459.  https://doi.org/10.1083/jcb.42.2.452 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Pelc SR, Viola-Magni MP (1969) Decrease of labeled DNA in cells of the adrenal medulla after intermittent exposure to cold. J Cell Biol 42(2):460–468.  https://doi.org/10.1083/jcb.42.2.460 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Montagnier L, Del Giudice E, Aïssa J et al (2015) Transduction of DNA information through water and electromagnetic waves. Electromagn Biol Med 34:106–112CrossRefPubMedGoogle Scholar
  40. 40.
    Giuditta A (1982) Proposal of a spiral mechanism of evolution. Riv Biol 75(1):13–31PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Biology DepartmentFederico II UniversityNaplesItaly
  2. 2.Accademia di Scienze Fisiche e MatematicheNaplesItaly

Personalised recommendations