Effect of Resveratrol on Oxidative Stress and Mitochondrial Dysfunction in Immature Brain during Epileptogenesis

  • Jaroslava Folbergrová
  • Pavel Ješina
  • Hana Kubová
  • Jakub Otáhal


The presence of oxidative stress in immature brain has been demonstrated during the acute phase of status epilepticus (SE). The knowledge regarding the long periods of survival after SE is not unequivocal, lacking direct evidence. To examine the presence and time profile of oxidative stress, its functional effect on mitochondria and the influence of an antioxidant treatment in immature rats during epileptogenesis, status epilepticus (SE) was induced in immature 12-day-old rats by Li-pilocarpine and at selected periods of the epileptogenesis; rat pups were subjected to examinations. Hydroethidine method was employed for detection of superoxide anion (O2.−), 3-nitrotyrosine (3-NT), and 4-hydroxynonenal (4-HNE) for oxidative damage of mitochondrial proteins and complex I activity for mitochondrial function. Natural polyphenolic antioxidant resveratrol was given in two schemes: “acute treatment,” i.p. administration 30 min before, 30 and 60 min after induction of SE and “full treatment” when applications continued once daily for seven consecutive days (25 mg/kg each dose). The obtained results clearly document that the period of epileptogenesis studied (up to 4 weeks) in immature brain is associated with the significant enhanced production of O2.−, the increased levels of 3-NT and 4-HNE and the persisting deficiency of complex I activity. Application of resveratrol either completely prevented or significantly reduced markers both of oxidative stress and mitochondrial dysfunction. The findings suggest that targeting oxidative stress in combination with current antiepileptic therapies may provide a benefit in the treatment of epilepsy.


Immature rats Status epilepticus Epileptogenesis Oxidative stress Mitochondrial dysfunction Resveratrol Protection 



This work was supported by grants #P303/10/0999 and #15-08565S from the Czech Science Foundation and with institutional support RVO: 6798523. The authors express their thanks to E. Lažková and V. Brožková for their excellent technical assistance.

Compliance with Ethical Standards

Conflicts of interest



  1. 1.
    Lynch M, Sayin U, Bownds J, Janumpalli S, Sutula T (2000) Long-term consequences of early postnatal seizures on hippocampal learning and plasticity. Eur J Neurosci 12:2252–2264. CrossRefPubMedGoogle Scholar
  2. 2.
    Kubová H, Mareš P, Suchomelová L, Brožek G, Druga R, Pitkänen A (2004) Status epilepticus in immature rats leads to behavioural and cognitive impairment and epileptogenesis. Eur J Neurosci 19(12):3255–3265. CrossRefPubMedGoogle Scholar
  3. 3.
    Pitkänen A, Lukasiuk K (2011) Mechanisms of epileptogenesis and potential treatment targets. Lancet Neurol 10(2):173–186. CrossRefPubMedGoogle Scholar
  4. 4.
    Patel M (2004) Mitochondrial dysfunction and oxidative stress: cause and consequence of epileptic seizures. Free Radic Biol Med 37:951–962. CrossRefGoogle Scholar
  5. 5.
    Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443(7134):787–795. CrossRefPubMedGoogle Scholar
  6. 6.
    Waldbaum S, Patel M (2010) Mitochondria, oxidative stress, and temporal lobe epilepsy. Epilepsy Res 88(1):23–45. CrossRefPubMedGoogle Scholar
  7. 7.
    Shin E-J, Jeong JH, Chung YH, Kim W-K, Ko K-H, Bach J-H, Hong J-S, Yoneda Y et al (2011) Role of oxidative stress in epileptic seizures. Neurochem Int 59(2):122–137. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Folbergrová J, Kunz WS (2012) Mitochondrial dysfunction in epilepsy. Mitochondrion 12(1):35–40. CrossRefPubMedGoogle Scholar
  9. 9.
    Liang LP, Waldbaum S, Rowley S, Huang TT, Day BJ, Patel M (2012) Mitochondrial oxidative stress and epilepsy in SOD2 deficient mice: Attenuation by a lipophilic metalloporphyrin. Neurobiol Dis 45(3):1068–1076. CrossRefPubMedGoogle Scholar
  10. 10.
    Rowley S, Patel M (2013) Mitochondrial involvement and oxidative stress in temporal lobe epilepsy. Free Radic Biol Med 62:121–131. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Folbergrová J (2013) Oxidative stress in immature brain following experimentally-induced seizures. Physiol Res 62(Suppl.1):S39–S48PubMedGoogle Scholar
  12. 12.
    Folbergrová J, Druga R, Otáhal J, Haugvicová R, Mareš P, Kubová H (2006) Effect of free radical spin trap N-tert-butyl-α-phenylnitrone (PBN) on seizures induced in immature rats by homocysteic acid. Exp Neurol 201(1):105–119. CrossRefPubMedGoogle Scholar
  13. 13.
    Folbergrová J, Ješina P, Drahota Z, Lisý V, Haugvicová J, Vojtíšková A, Houštěk J (2007) Mitochondrial complex I inhibition in cerebral cortex of immature rats following homocysteic acid-induced seizures. Exp Neurol 204:597–609. CrossRefPubMedGoogle Scholar
  14. 14.
    Folbergrová J, Ješina P, Haugvicová R, Lisý V, Houštěk J (2010) Sustained deficiency of mitochondrial complex I activity during long periods of survival after seizures induced in immature rats by homocysteic acid. Neurochem Int 56:394–403. CrossRefPubMedGoogle Scholar
  15. 15.
    Folbergrová J, Otáhal J, Druga R (2012) Brain superoxide anion formation in immature rats during seizures: protection by selected compounds. Exp Neurol 233(1):421–429. CrossRefPubMedGoogle Scholar
  16. 16.
    Folbergrová J, Ješina P, Kubová H, Druga R, Otáhal J (2016) Status epilepticus in immature rats is associated with oxidative stress and mitochondrial dysfunction. Front Cell Neurosci 10:1–13. CrossRefGoogle Scholar
  17. 17.
    Folbergrová J (2016) Free radicals, oxidative stress, and epilepsy. In: Ahmad S (ed) Reactive oxygen species in biology and human health. CRC Press, Boca Raton, pp 147–153.
  18. 18.
    Dobbing J (1970) Undernutrition and the developing brain. In: Himwich WA (ed) Developmental neurobiology. Thomas, Springfield, pp. 241–261Google Scholar
  19. 19.
    Hirsch E, Baram TZ, Snead OC (1992) Ontogenic study of lithium-pilocarpine-induced status epilepticus in rats. Brain Res 583(1-2):120–126. CrossRefPubMedGoogle Scholar
  20. 20.
    Bindokas VP, Jordán J, Lee CC, Miller RJ (1996) Superoxide production in rat hippocampal neurons: selective imaging with hydroethidine. J Neurosci 16(4):1324–1336PubMedGoogle Scholar
  21. 21.
    Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic, New YorkGoogle Scholar
  22. 22.
    Liang LP, Ho YS, Patel M (2000) Mitochondrial superoxide production in kainate-induced hippocampal damage. Neuroscience 101(3):563–570. CrossRefPubMedGoogle Scholar
  23. 23.
    Ansari MA, Joshi G, Huang Q, Opii WO, Abdul HM, Sultana R, Butterfield DA (2006) In vivo administration of D609 leads to protection of subsequently isolated gerbil brain mitochondria subjected to in vitro oxidative stress induced by amyloid beta-peptide and other oxidative stressors: relevance to Alzheimer’s disease and other oxidative stress-related neurodegenerative disorders. Free Radic Biol Med 41(11):1694–1703. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kubová H, Mareš P (2013) Are morphologic and functional consequences of status epilepticus in infant rats progressive? Neuroscience 235:232–249. CrossRefPubMedGoogle Scholar
  25. 25.
    Waldbaum S, Liang LP, Patel M (2010) Persistent impairment of mitochondrial and tissue redox status during lithium-pilocarpine-induced epileptogenesis. J Neurochem 115(5):1172–1182. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Williams S, Hamil N, Abramov AY, Walker MC, Kovac S (2015) Status epilepticus results in persistent overproduction of reactive oxygen species, inhibition of which is neuroprotective. Neuroscience 303:160–165. CrossRefPubMedGoogle Scholar
  27. 27.
    Zielonka J, Kalyanaraman B (2010) Hydroethidine- and MitoSox-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: Another inconvenient truth. Free Radic Biol Med 48(8):983–1001. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kalyanaraman B, Dranka BP, Hardy M, Michalski R, Zielonka J (2014) HPLC-based monitoring of products formed from hydroethidine-based fluorogenic probes-the ultimate approach for intra- and extracellular superoxide detection. Biochim Biophys Acta 1840(2):739–744. CrossRefPubMedGoogle Scholar
  29. 29.
    Folbergrová J, Ješina P, Nůsková H, Houštěk J (2013) Antioxidant enzymes in cerebral cortex of immature rats following experimentally-induced seizures: Upregulation of mitochondrial MnSOD (SOD2). Int J Dev Neurosci 31(2):123–130. CrossRefPubMedGoogle Scholar
  30. 30.
    Sheldon RA, Jiang X, Francisco C, Christen S, Vexler ZS, Täuber MG, Ferriero DM (2004) Manipulation of antioxidant pathways in neonatal murine brain. Pediatric Res 56(4):656–662. CrossRefGoogle Scholar
  31. 31.
    Ryan K, Liang LP, Rivard C, Patel M (2014) Temporal and spatial increase of reactive nitrogen species in the kainate model of temporal lobe epilepsy. Neurobiol Dis 64:8–15. CrossRefPubMedGoogle Scholar
  32. 32.
    Ong W-Y, Liu X-R, Hu C-Y, Halliwell B (2000) Distribution of hydroxynonenal-modified proteins in the kainate-lesioned rat hippocampus: evidence that hydroxynonenal formation precedes neuronal cell death. Free Radic Biol Med 28(8):1214–1221. CrossRefPubMedGoogle Scholar
  33. 33.
    Bautista J, Corpas R, Ramos R, Cremades O, Gutiérrez JF, Alegre S (2000) Brain mitochondrial complex I inactivation by oxidative modification. Biochem Biophys Res Commun 275(3):890–894. CrossRefPubMedGoogle Scholar
  34. 34.
    Brown GC, Borutaite V (2004) Inhibition of mitochondrial respiratory complex I by nitric oxide, peroxynitrite and S-nitrosothiols. Biochim Biophys Acta 1658(1-2):44–49. CrossRefPubMedGoogle Scholar
  35. 35.
    Murray J, Taylor SW, Zhang B, Ghosh SS, Capaldi RA (2003) Oxidative damage to mitochondrial complex I due to peroxynitrite. J Biol Chem 278(39):37223–37230. CrossRefPubMedGoogle Scholar
  36. 36.
    Pearce LL, Kanai AJ, Epperly MW, Peterson J (2005) Nitrosative stress results in irreversible inhibition of purified mitochondrial complexes I and III without modification of cofactors. Nitric Oxide 13(4):254–263. CrossRefPubMedGoogle Scholar
  37. 37.
    Burwell LS, Nadtochiy SM, Tompkins AJ, Young S, Brookes PS (2006) Direct evidence for S-nitrosation of mitochondrial complex I. Biochem J 394(3):627–634. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Dahm CC, Moore K, Murphy MP (2006) Persistent S-nitrosation of complex I and other mitochondrial membrane proteins by S-nitrosothiols but not nitric oxide or peroxynitrite. Implications for the interaction of nitric oxide with mitochondria. J Biol Chem 281:10056–10065. CrossRefPubMedGoogle Scholar
  39. 39.
    Ryan K, Backos DS, Reigan P, Patel M (2012) Post-translational oxidative modification and inactivation of mitochondrial complex I in epileptogenesis. J Neurosci 32(33):11250–11258. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    DiMauro S, Hirano M (2005) Mitochondrial encephalomyopathies: an update. Neuromuscul Disord 15(4):276–286. CrossRefPubMedGoogle Scholar
  41. 41.
    Robinson BH (1998) Human complex I deficiency: clinical spectrum and involvement of oxygen free radicals in the pathogenicity of the effect. Biochim Biophys Acta 1364:271–286CrossRefPubMedGoogle Scholar
  42. 42.
    Kunz WS, Kudin AP, Vielhaber S, Blümcke, Zuschratter W, Schramm J, Beck H, Elger CE (2000) Mitochondrial complex I deficiency in the epileptic focus of patients with temporal lobe epilepsy. Ann Neurol 48:766–773. CrossRefPubMedGoogle Scholar
  43. 43.
    Kudin AP, Kudina TA, Seyfried J, Vielhaber S, Beck H, Elger CE, Kunz WS (2002) Seizure-dependent modulation of mitochondrial oxidative phosphorylation in rat hippocampus. Eur J Neurosci 15(7):1105–1114. CrossRefPubMedGoogle Scholar
  44. 44.
    Chuang YC, Chang AYW, Lin J-W, Hsu SP, Chan SHH (2004) Mitochondrial dysfunction and ultrastructural damage in the hippocampus during kainic acid-induced status epilepticus in the rat. Epilepsia 45(10):1202–1209. CrossRefPubMedGoogle Scholar
  45. 45.
    Sipos I, Tretter L, Adam-Vizi V (2003) Quantitative relationship between inhibition of respiratory complexes and formation of reactive oxygen species in isolated nerve terminals. J Neurochem 84:112–118. CrossRefPubMedGoogle Scholar
  46. 46.
    Kudin AP, Bimpong-Buta NYB, Vielhaber S, Elger CE, Kunz WS (2004) Characterization of superoxide-producing sites in isolated brain mitochondria. J Biol Chem 279(6):4127–4135. CrossRefPubMedGoogle Scholar
  47. 47.
    Kussmaul L, Hirst J (2006) The mechanism of superoxide production by NADH:Ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc Natl Acad Sci U S A 103(20):7607–7612. CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Fato R, Bergamini C, Leoni S, Strocchi P, Lenaz G (2008) Generation of reactive oxygen species by mitochondrial complex I: Implications in neurodegeneration. Neurochem Res 33:2487–2501. CrossRefPubMedGoogle Scholar
  49. 49.
    Perier C, Tieu K, Guégan C, Caspersen C, Jackson-Lewis V, Carelli V, Martinuzzi A, Hirano M et al (2005) Complex I deficiency primes Bax-dependent neuronal aptosis through mitochondrial oxidative damage. Proc Natl Acad Sci U S A 102(52):19126–19131. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Marella M, Seo BB, Matsuno-Yagi A, Yagi T (2007) Mechanism of cell death caused by complex I defects in a rat dopaminergic cell line. J Biol Chem 282(33):24146–24156. CrossRefPubMedGoogle Scholar
  51. 51.
    Yamakura F, Taka H, Fujimura T, Murayama K (1998) Inactivation of human manganese-superoxide dismutase by peroxynitrite is caused by exclusive nitration of tyrosine 34 to 3-nitrotyrosine. J Biol Chem 273(23):14085–14089. CrossRefPubMedGoogle Scholar
  52. 52.
    MacMillan-Crow LA, Crow JP, Thompson JA (1998) Peroxynitrite-mediated inactivation of manganese superoxide dismutase involves nitration and oxidation of critical tyrosine residues. Biochemistry 37(6):1613–1622. CrossRefPubMedGoogle Scholar
  53. 53.
    Bayir H, Kagan VE, Clark RSB, Janesko-Feldman K, Rafikov R, Huang Z, Zhang X, Vagni V et al (2007) Neuronal NOS-mediated nitration and inactivation of manganese superoxide dismutase in brain after experimental and human brain injury. J Neurochem 101(1):168–181. CrossRefPubMedGoogle Scholar
  54. 54.
    Bidmon HJ, Gorg B, Palomero-Gallacher N, Schleicher A, Haussinger D, Speckmann EJ, Zilles K (2008) Glutamine synthetase becomes nitrated and its activity reduced during repetitive seizure activity in the pentylentetrazole model of epilepsy. Epilepsia 49(10):1733–1748. CrossRefPubMedGoogle Scholar
  55. 55.
    Van der Hel WS, Hessel EVS, Bos IWM, Mulder S, Verlinde SAMW, van Eijsden P, de Graan PNE (2014) Persistent reduction of hippocampal glutamine synthetase expression after status epilepticus in immature rats. Eur J Neurosci 40(12):3711–3719. CrossRefPubMedGoogle Scholar
  56. 56.
    Trotti D, Danbolt NC, Volterra A (1998) Glutamate transporters are oxidant-vulnerable: molecular link between oxidative and excitotoxic neurodegeneration? Trends Pharmacol Sci 19(8):328–334. CrossRefPubMedGoogle Scholar
  57. 57.
    Kong Q, Takahashi K, Schulte D, Stouffer N, Lin Y, Lin CL (2012) Increased glial glutamate transporter EAAT2 expression reduces epileptogenic processes following pilocarpine-induced status epilepticus. Neurobiol Dis 47(2):145–154. CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Sigleton RH, Yan HQ, Fellows-Mayle W, Dixon CE (2010) Resveratrol attenuates behavioral impairments and reduces cortical and hippocampal loss in a rat controlled cortical impact model of traumatic brain injury. J Neurotrauma 27(6):1091–1099. CrossRefGoogle Scholar
  59. 59.
    Sakata Y, Zhuang H, Kwansa H, Koehler RC, Doré S (2010) Resveratrol protects against experimental stroke: Putative neuroprotective role of heme oxygenase 1. Exp Neurol 224(1):325–329. CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Kroon PA, Iyer A, Chunduri P, Chan V, Brown L (2010) The cardiovascular potential. Nutrapharmacology of resveratrol: pharmacokinetics, molecular mechanisms and therapeutic potential. Curr. Med Chem 17:2442–2455Google Scholar
  61. 61.
    Gupta YK, Briyal S, Chaudhary G (2002) Protective effect of trans-resveratrol against kainic acid-induced seizures and oxidative stress in rats. Pharmacol Biochem Behav 71:245–249. CrossRefPubMedGoogle Scholar
  62. 62.
    Wu Z, Xu Q, Zhang L, Kong D, Ma R, Wang L (2009) Protective effect of resveratrol against kainate-induced temporal lobe epilepsy in rats. Neurochem Res 34(8):1393–1400. CrossRefPubMedGoogle Scholar
  63. 63.
    Shetty AK (2011) Promise of resveratrol for easing status epilepticus and epilepsy. Pharmacol Ther 131(3):269–286. CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Wang S, Bo Q, Zhao X, Yang X, Chi Z, Liu X (2013) Resveratrol pre-treatment reduces early inflammatory responses induced by status epilepticus via mTOR signaling. Brain Res 1492:122–129. CrossRefPubMedGoogle Scholar
  65. 65.
    Mishra V, Shuai B, Kodali M, Shetty GA, Hattiangady B, Rao X, Shetty AK (2015) Resveratrol treatment after status epilepticus restrains neurodegeneration and abnormal neurogenesis with suppression of oxidative stress and inflammation. Sci Rep 5(1):1–18. CrossRefGoogle Scholar
  66. 66.
    Friedman LK, Goldstein B, Rafiuddin A, Roblejo P, Friedman S (2013) Lack of resveratrol neuroprotection in developing rats treated with kainic acid. Neuroscience 230:39–49. CrossRefPubMedGoogle Scholar
  67. 67.
    Rong Y, Doctrow SR, Tocco G, Baudry M (1999) EUK-134, a synthetic superoxide dismutase and catalase mimetic, prevents oxidative stress and atttenuates kainate-induced neuropathology. Proc Natl Acad Sci U S A 96(17):9897–9902. CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Frantseva MV, Perez Velazquez JL, Tsoraklidis G, Mendonca AJ, Adamchik Y, Mills LR, Carlen PL, Burnham MW (2000) Oxidative stress is involved in seizure-induced neurodegeneration in the kindling model of epilepsy. Neuroscience 97(3):431–435. CrossRefPubMedGoogle Scholar
  69. 69.
    Tomaciello F, Leclercq K, Kaminski RM (2016) Resveratrol lacks protective activity against acute seizures in mouse models. Neurosci Lett 632:199–203. CrossRefPubMedGoogle Scholar
  70. 70.
    Holthoff JH, Woodling KA, Doergr DR, Burns ST, Hinson JA, Mayeux PR (2010) Resveratrol, a dietary polyphenolic phytoalexin, is a functional scavenger of peroxynitrite. Biochem Pharmacol 80(8):1260–1265. CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Folbergrová J, Ješina P, Kubová H, Otáhal J (2015) Resveratrol attenuates oxidative stress associated with status epilepticus in immature rats. Epilepsia 56(Suppl.1):3–263.P0469Google Scholar
  72. 72.
    Sahebkar A (2010) Neuroprotective effects of resveratrol: Potential mechanisms. Neurochem Int 57(6):621–622. CrossRefPubMedGoogle Scholar
  73. 73.
    Kesherwani V, Atif F, Yousuf S, Agrawal SK (2013) Resveratrol protects spinal cord dorsal column from hypoxic injury by activating Nrf2. Neuroscience 241:80–88. CrossRefPubMedGoogle Scholar
  74. 74.
    Narayanan SV, Dave KR, Saul I, Perez-Pinzon MA (2015) Resveratrol preconditioning protects against cerebral ischemic injury via nuclear erythroid 2-related factor 2. Stroke 46(6):1626–1632. CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Mazzuferi M, Kumar G, van Eyll J, Danis B, Foerch P, Kaminski RM (2013) Nrf2 defense pathway:Experimental evidence for its protective role in epilepsy. Ann Neurol 74(4):560–568. CrossRefPubMedGoogle Scholar
  76. 76.
    Wang W, Wu YF, Zhang GL, Fang HB, Wang HC, Zang HM, Xie T, Wang WP (2014) Activation of Nrf2-ARE signal pathway protects the brain from damage induced by epileptic seizure. Brain Res 1544:54–61. CrossRefPubMedGoogle Scholar
  77. 77.
    Pauletti A, Terrone G, Shekh-Ahmad T, Salamone A, Ravizza T, Rizzi M, Pastore A, Pascente R et al (2017) Targeting oxidative stress improves disease outcomes in a rat model of acquired epilepsy. Brain 140(7):1885–1899. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Physiology of the Czech Academy of SciencesPrague 4Czech Republic

Personalised recommendations