Skip to main content

Advertisement

Log in

Fluoxetine Inhibits Natural Decay of Long-Term Memory via Akt/GSK-3β Signaling

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Understanding the mechanisms underlying the natural decay of long-term memory can help us find means of extending the duration of long-term memory. However, the neurobiological processes involved in the decay of long-term memory are poorly understood. In the present study, we examined the effect of acute and chronic treatment of fluoxetine on natural decay of long-term memory and the possible mechanism. Late administration of fluoxetine prolonged the persistence of long-term memory in mice, as demonstrated by object location recognition and Barnes maze tests. Fluoxetine altered Akt/glycogen synthase kinase-3β (GSK-3β)/β-catenin signaling in the hippocampus. Late short- and long-term pharmacological inhibition of GSK-3β mimicked the effect of fluoxetine on memory persistence. Pharmacological inhibition of Akt blocked the effect of fluoxetine on memory persistence. Finally, late infusion of fluoxetine increased hippocampal long-term potentiation (LTP) and pharmacological inhibition of GSK-3β blocked the natural decline in LTP. These results demonstrate that GSK-3β might be a key molecule in memory decay process, and fluoxetine extends the period of long-term memory maintenance via Akt/GSK-3β signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Migues PV, Liu L, Archbold GE, Einarsson EO, Wong J, Bonasia K, Ko SH, Wang YT et al (2016) Blocking synaptic removal of GluA2-containing AMPA receptors prevents the natural forgetting of long-term memories. J Neurosci 36(12):3481–3494. https://doi.org/10.1523/JNEUROSCI.3333-15.2016

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Sachser RM, Santana F, Crestani AP, Lunardi P, Pedraza LK, Quillfeldt JA, Hardt O, Alvares Lde O (2016) Forgetting of long-term memory requires activation of NMDA receptors, L-type voltage-dependent Ca2+ channels, and calcineurin. Sci Rep 6(1):22771. https://doi.org/10.1038/srep22771

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Frankland PW, Kohler S, Josselyn SA (2013) Hippocampal neurogenesis and forgetting. Trends Neurosci 36(9):497–503. https://doi.org/10.1016/j.tins.2013.05.002

    Article  PubMed  CAS  Google Scholar 

  4. Yau SY, Li A, So KF (2015) Involvement of adult hippocampal neurogenesis in learning and forgetting. Neural Plast 2015:717958. https://doi.org/10.1155/2015/717958

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Chang YC, Tzeng SF, Yu L, Huang AM, Lee HT, Huang CC, Ho CJ (2006) Early-life fluoxetine exposure reduced functional deficits after hypoxic-ischemia brain injury in rat pups. Neurobiol Dis 24(1):101–113. https://doi.org/10.1016/j.nbd.2006.06.001

    Article  PubMed  CAS  Google Scholar 

  6. Chen SJ, Kao CL, Chang YL, Yen CJ, Shui JW, Chien CS, Chen IL, Tsai TH et al (2007) Antidepressant administration modulates neural stem cell survival and serotoninergic differentiation through bcl-2. Curr Neurovasc Res 4(1):19–29. https://doi.org/10.2174/156720207779940707

    Article  PubMed  CAS  Google Scholar 

  7. Jin Y, Lim CM, Kim SW, Park JY, Seo JS, Han PL, Yoon SH, Lee JK (2009) Fluoxetine attenuates kainic acid-induced neuronal cell death in the mouse hippocampus. Brain Res 1281:108–116. https://doi.org/10.1016/j.brainres.2009.04.053

    Article  PubMed  CAS  Google Scholar 

  8. Han H, Dai C, Dong Z (2015) Single fluoxetine treatment before but not after stress prevents stress-induced hippocampal long-term depression and spatial memory retrieval impairment in rats. Sci Rep 5(1):12667. https://doi.org/10.1038/srep12667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Luo P, Zhang X, Lu Y, Chen C, Li C, Zhou M, Lu Q, Xu X et al (2016) Fluoxetine ameliorates cognitive impairments induced by chronic cerebral hypoperfusion via down-regulation of HCN2 surface expression in the hippocampal CA1 area in rats. Pharmacol Biochem Behav 140:1–7. https://doi.org/10.1016/j.pbb.2015.11.003

    Article  PubMed  CAS  Google Scholar 

  10. Lazarov O, Hollands C (2016) Hippocampal neurogenesis: learning to remember. Prog Neurobiol 138-140:1–18. https://doi.org/10.1016/j.pneurobio.2015.12.006

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhou QG, Lee D, Ro EJ, Suh H (2016) Regional-specific effect of fluoxetine on rapidly dividing progenitors along the dorsoventral axis of the hippocampus. Sci Rep 6(1):35572. https://doi.org/10.1038/srep35572

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Polter AM, Yang S, Jope RS, Li X (2012) Functional significance of glycogen synthase kinase-3 regulation by serotonin. Cell Signal 24(1):265–271. https://doi.org/10.1016/j.cellsig.2011.09.009

    Article  PubMed  CAS  Google Scholar 

  13. Sutton LP, Rushlow WJ (2011) The effects of neuropsychiatric drugs on glycogen synthase kinase-3 signaling. Neuroscience 199:116–124. https://doi.org/10.1016/j.neuroscience.2011.09.056

    Article  PubMed  CAS  Google Scholar 

  14. Kohn AD, Summers SA, Birnbaum MJ, Roth RA (1996) Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J Biol Chem 271(49):31372–31378. https://doi.org/10.1074/jbc.271.49.31372

    Article  PubMed  CAS  Google Scholar 

  15. Sakoda H, Gotoh Y, Katagiri H, Kurokawa M, Ono H, Onishi Y, Anai M, Ogihara T et al (2003) Differing roles of Akt and serum- and glucocorticoid-regulated kinase in glucose metabolism, DNA synthesis, and oncogenic activity. J Biol Chem 278(28):25802–25807. https://doi.org/10.1074/jbc.M301127200

    Article  PubMed  CAS  Google Scholar 

  16. Song G, Ouyang G, Bao S (2005) The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 9(1):59–71. https://doi.org/10.1111/j.1582-4934.2005.tb00337.x

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer 2(7):489–501. https://doi.org/10.1038/nrc839

    Article  PubMed  CAS  Google Scholar 

  18. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307(5712):1098–1101. https://doi.org/10.1126/science.1106148

    Article  PubMed  CAS  Google Scholar 

  19. Franke TF (2008) PI3K/Akt: getting it right matters. Oncogene 27(50):6473–6488. https://doi.org/10.1038/onc.2008.313

    Article  PubMed  CAS  Google Scholar 

  20. Horwood JM, Dufour F, Laroche S, Davis S (2006) Signalling mechanisms mediated by the phosphoinositide 3-kinase/Akt cascade in synaptic plasticity and memory in the rat. Eur J Neurosci 23(12):3375–3384. https://doi.org/10.1111/j.1460-9568.2006.04859.x

    Article  PubMed  Google Scholar 

  21. Bradley CA, Peineau S, Taghibiglou C, Nicolas CS, Whitcomb DJ, Bortolotto ZA, Kaang BK, Cho K et al (2012) A pivotal role of GSK-3 in synaptic plasticity. Front Mol Neurosci 5:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Kim JI, Lee HR, Sim SE, Baek J, Yu NK, Choi JH, Ko HG, Lee YS et al (2011) PI3Kgamma is required for NMDA receptor-dependent long-term depression and behavioral flexibility. Nat Neurosci 14(11):1447–1454. https://doi.org/10.1038/nn.2937

    Article  PubMed  CAS  Google Scholar 

  23. Kramer T, Schmidt B, Lo Monte F (2012) Small-molecule inhibitors of GSK-3: structural insights and their application to Alzheimer’s disease models. Int J Alzheimers Dis 2012:381029. https://doi.org/10.1155/2012/381029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Mazur M, Bujak A, Matloka M, Janowska S, Gunerka P, Bojarski L, Stanczak A, Klejman A et al (2015) Cell-based assay for low- and high-scale screening of the Wnt/beta-catenin signaling modulators. Anal Biochem 475:56–67. https://doi.org/10.1016/j.ab.2015.01.016

    Article  PubMed  CAS  Google Scholar 

  25. Yi JH, Baek SJ, Heo S, Park HJ, Kwon H, Lee S, Jung J, Park SJ et al (2018) Direct pharmacological Akt activation rescues Alzheimer's disease like memory impairments and aberrant synaptic plasticity. Neuropharmacology 128:282–292. https://doi.org/10.1016/j.neuropharm.2017.10.028

    Article  PubMed  CAS  Google Scholar 

  26. Kitagishi Y, Kobayashi M, Kikuta K, Matsuda S (2012) Roles of PI3K/AKT/GSK3/mTOR pathway in cell signaling of mental illnesses. Depress Res Treat 2012:752563

    PubMed  PubMed Central  Google Scholar 

  27. Lee HI, Lee SW, Kim SY, Kim NG, Park KJ, Choi BT, Shin YI, Shin HK (2017) Pretreatment with light-emitting diode therapy reduces ischemic brain injury in mice through endothelial nitric oxide synthase-dependent mechanisms. Biochem Biophys Res Commun 486(4):945–950. https://doi.org/10.1016/j.bbrc.2017.03.131

    Article  PubMed  CAS  Google Scholar 

  28. Patil SS, Sunyer B, Hoger H, Lubec G (2009) Evaluation of spatial memory of C57BL/6J and CD1 mice in the Barnes maze, the multiple T-maze and in the Morris water maze. Behav Brain Res 198(1):58–68. https://doi.org/10.1016/j.bbr.2008.10.029

    Article  PubMed  Google Scholar 

  29. Davis RL, Zhong Y (2017) The biology of forgetting—a perspective. Neuron 95(3):490–503. https://doi.org/10.1016/j.neuron.2017.05.039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Liu Y, Du S, Lv L, Lei B, Shi W, Tang Y, Wang L, Zhong Y (2016) Hippocampal activation of Rac1 regulates the forgetting of object recognition memory. Curr Biol 26(17):2351–2357. https://doi.org/10.1016/j.cub.2016.06.056

    Article  PubMed  CAS  Google Scholar 

  31. Shuai Y, Lu B, Hu Y, Wang L, Sun K, Zhong Y (2010) Forgetting is regulated through Rac activity in drosophila. Cell 140(4):579–589. https://doi.org/10.1016/j.cell.2009.12.044

    Article  PubMed  CAS  Google Scholar 

  32. Deisseroth K, Singla S, Toda H, Monje M, Palmer TD, Malenka RC (2004) Excitation-neurogenesis coupling in adult neural stem/progenitor cells. Neuron 42(4):535–552. https://doi.org/10.1016/S0896-6273(04)00266-1

    Article  PubMed  CAS  Google Scholar 

  33. Feng R, Rampon C, Tang YP, Shrom D, Jin J, Kyin M, Sopher B, Miller MW et al (2001) Deficient neurogenesis in forebrain-specific presenilin-1 knockout mice is associated with reduced clearance of hippocampal memory traces. Neuron 32(5):911–926. https://doi.org/10.1016/S0896-6273(01)00523-2

    Article  PubMed  CAS  Google Scholar 

  34. Dong Z, Bai Y, Wu X, Li H, Gong B, Howland JG, Huang Y, He W et al (2013) Hippocampal long-term depression mediates spatial reversal learning in the Morris water maze. Neuropharmacology 64:65–73. https://doi.org/10.1016/j.neuropharm.2012.06.027

    Article  PubMed  CAS  Google Scholar 

  35. Migues PV, Hardt O, Finnie P, Wang YW, Nader K (2014) The maintenance of long-term memory in the hippocampus depends on the interaction between N-ethylmaleimide-sensitive factor and GluA2. Hippocampus 24(9):1112–1119. https://doi.org/10.1002/hipo.22295

    Article  PubMed  CAS  Google Scholar 

  36. Yao Y, Kelly MT, Sajikumar S, Serrano P, Tian D, Bergold PJ, Frey JU, Sacktor TC (2008) PKM zeta maintains late long-term potentiation by N-ethylmaleimide-sensitive factor/GluR2-dependent trafficking of postsynaptic AMPA receptors. J Neurosci 28(31):7820–7827. https://doi.org/10.1523/JNEUROSCI.0223-08.2008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Regan P, Piers T, Yi JH, Kim DH, Huh S, Park SJ, Ryu JH, Whitcomb DJ et al (2015) Tau phosphorylation at serine 396 residue is required for hippocampal LTD. J Neurosci 35(12):4804–4812. https://doi.org/10.1523/JNEUROSCI.2842-14.2015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Peineau S, Bradley C, Taghibiglou C, Doherty A, Bortolotto ZA, Wang YT, Collingridge GL (2008) The role of GSK-3 in synaptic plasticity. Br J Pharmacol 153(Suppl 1):S428–S437

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Peineau S, Taghibiglou C, Bradley C, Wong TP, Liu L, Lu J, Lo E, Wu D et al (2007) LTP inhibits LTD in the hippocampus via regulation of GSK3beta. Neuron 53(5):703–717. https://doi.org/10.1016/j.neuron.2007.01.029

    Article  PubMed  CAS  Google Scholar 

  40. Mills F, Bartlett TE, Dissing-Olesen L, Wisniewska MB, Kuznicki J, Macvicar BA, Wang YT, Bamji SX (2014) Cognitive flexibility and long-term depression (LTD) are impaired following beta-catenin stabilization in vivo. Proc Natl Acad Sci U S A 111(23):8631–8636. https://doi.org/10.1073/pnas.1404670111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Kimura T, Whitcomb DJ, Jo J, Regan P, Piers T, Heo S, Brown C, Hashikawa T et al (2014) Microtubule-associated protein tau is essential for long-term depression in the hippocampus. Philos Trans R Soc Lond Ser B Biol Sci 369:20130144

    Article  CAS  Google Scholar 

  42. Eales KL, Palygin O, O'Loughlin T, Rasooli-Nejad S, Gaestel M, Muller J, Collins DR, Pankratov Y et al (2014) The MK2/3 cascade regulates AMPAR trafficking and cognitive flexibility. Nat Commun 5:4701. https://doi.org/10.1038/ncomms5701

    Article  PubMed  CAS  Google Scholar 

  43. Mulkey RM, Endo S, Shenolikar S, Malenka RC (1994) Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature 369(6480):486–488. https://doi.org/10.1038/369486a0

    Article  PubMed  CAS  Google Scholar 

  44. Huang GJ, Bannerman D, Flint J (2008) Chronic fluoxetine treatment alters behavior, but not adult hippocampal neurogenesis, in BALB/cJ mice. Mol Psychiatry 13(2):119–121. https://doi.org/10.1038/sj.mp.4002104

    Article  PubMed  CAS  Google Scholar 

  45. Klomp A, Vaclavu L, Meerhoff GF, Reneman L, Lucassen PJ (2014) Effects of chronic fluoxetine treatment on neurogenesis and tryptophan hydroxylase expression in adolescent and adult rats. PLoS One 9(5):e97603. https://doi.org/10.1371/journal.pone.0097603

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Hui J, Zhang J, Kim H, Tong C, Ying Q, Li Z, Mao X, Shi G et al (2014) Fluoxetine regulates neurogenesis in vitro through modulation of GSK-3beta/beta-catenin signaling. Int J Neuropsychopharmacol 18

  47. Park SW, Phuong VT, Lee CH, Lee JG, Seo MK, Cho HY, Fang ZH, Lee BJ et al (2011) Effects of antipsychotic drugs on BDNF, GSK-3beta, and beta-catenin expression in rats subjected to immobilization stress. Neurosci Res 71(4):335–340. https://doi.org/10.1016/j.neures.2011.08.010

    Article  PubMed  CAS  Google Scholar 

  48. McManus EJ, Sakamoto K, Armit LJ, Ronaldson L, Shpiro N, Marquez R, Alessi DR (2005) Role that phosphorylation of GSK3 plays in insulin and Wnt signalling defined by knockin analysis. EMBO J 24(8):1571–1583. https://doi.org/10.1038/sj.emboj.7600633

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Polter AM, Li X (2011) Glycogen synthase kinase-3 is an intermediate modulator of serotonin neurotransmission. Front Mol Neurosci 4:31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Alex KD, Pehek EA (2007) Pharmacologic mechanisms of serotonergic regulation of dopamine neurotransmission. Pharmacol Ther 113(2):296–320. https://doi.org/10.1016/j.pharmthera.2006.08.004

    Article  PubMed  CAS  Google Scholar 

  51. Schmid CL, Bohn LM (2010) Serotonin, but not N-methyltryptamines, activates the serotonin 2A receptor via a ss-arrestin2/Src/Akt signaling complex in vivo. J Neurosci 30(40):13513–13524. https://doi.org/10.1523/JNEUROSCI.1665-10.2010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Hong JG, Kim DH, Lee CH, Park SJ, Kim JM, Cai M, Jang DS, Ryu JH (2012) GSK-3beta activity in the hippocampus is required for memory retrieval. Neurobiol Learn Mem 98(2):122–129. https://doi.org/10.1016/j.nlm.2012.07.003

    Article  PubMed  CAS  Google Scholar 

  53. Kimura T, Yamashita S, Nakao S, Park JM, Murayama M, Mizoroki T, Yoshiike Y, Sahara N et al (2008) GSK-3beta is required for memory reconsolidation in adult brain. PLoS One 3(10):e3540. https://doi.org/10.1371/journal.pone.0003540

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Giese KP (2009) GSK-3: a key player in neurodegeneration and memory. IUBMB Life 61(5):516–521. https://doi.org/10.1002/iub.187

    Article  PubMed  CAS  Google Scholar 

  55. Lei P, Ayton S, Bush AI, Adlard PA (2011) GSK-3 in neurodegenerative diseases. Int J Alzheimers Dis 2011:189246

    PubMed  PubMed Central  Google Scholar 

  56. Ampuero E, Stehberg J, Gonzalez D, Besser N, Ferrero M, Diaz-Veliz G, Wyneken U, Rubio FJ (2013) Repetitive fluoxetine treatment affects long-term memories but not learning. Behav Brain Res 247:92–100. https://doi.org/10.1016/j.bbr.2013.03.011

    Article  PubMed  CAS  Google Scholar 

  57. Flood JF, Cherkin A (1987) Fluoxetine enhances memory processing in mice. Psychopharmacology 93(1):36–43. https://doi.org/10.1007/BF02439584

    Article  PubMed  CAS  Google Scholar 

  58. Volk LJ, Bachman JL, Johnson R, Yu Y, Huganir RL (2013) PKM-zeta is not required for hippocampal synaptic plasticity, learning and memory. Nature 493(7432):420–423. https://doi.org/10.1038/nature11802

    Article  PubMed  CAS  Google Scholar 

  59. Ling DS, Benardo LS, Serrano PA, Blace N, Kelly MT, Crary JF, Sacktor TC (2002) Protein kinase Mzeta is necessary and sufficient for LTP maintenance. Nat Neurosci 5(4):295–296. https://doi.org/10.1038/nn829

    Article  PubMed  CAS  Google Scholar 

  60. Sacktor TC (2008) PKMzeta, LTP maintenance, and the dynamic molecular biology of memory storage. Prog Brain Res 169:27–40. https://doi.org/10.1016/S0079-6123(07)00002-7

    Article  PubMed  CAS  Google Scholar 

  61. Pastalkova E, Serrano P, Pinkhasova D, Wallace E, Fenton AA, Sacktor TC (2006) Storage of spatial information by the maintenance mechanism of LTP. Science 313(5790):1141–1144. https://doi.org/10.1126/science.1128657

    Article  PubMed  CAS  Google Scholar 

  62. Serrano P, Friedman EL, Kenney J, Taubenfeld SM, Zimmerman JM, Hanna J, Alberini C, Kelley AE et al (2008) PKMzeta maintains spatial, instrumental, and classically conditioned long-term memories. PLoS Biol 6(12):2698–2706. https://doi.org/10.1371/journal.pbio.0060318

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education, Science and Technology (MEST) (2017R1C1B1003822, 2016R1A5A2007009, and 2015R1A2A2A01007838).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong Hyun Kim or Jong Hoon Ryu.

Ethics declarations

The treatment and maintenance of the animals were carried out in accordance with the Animal Care and Use Guidelines Dong-A University and Kyung Hee University, Korea. All of the experimental protocols using animals were approved by the Institutional Animal Care and Use Committee of Dong-A University and Kyung Hee University, Korea.

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 96.9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, J.H., Zhang, J., Ko, S.Y. et al. Fluoxetine Inhibits Natural Decay of Long-Term Memory via Akt/GSK-3β Signaling. Mol Neurobiol 55, 7453–7462 (2018). https://doi.org/10.1007/s12035-018-0919-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-0919-x

Keywords

Navigation