Advertisement

Causative Genes in Amyotrophic Lateral Sclerosis and Protein Degradation Pathways: a Link to Neurodegeneration

  • C. Maurel
  • A. Dangoumau
  • S. Marouillat
  • C. Brulard
  • A. Chami
  • R. Hergesheimer
  • P. Corcia
  • H. Blasco
  • C. R. Andres
  • P. Vourc’h
Article

Abstract

Amyotrophic lateral sclerosis (ALS) is a disease caused by the degeneration of motor neurons (MNs) leading to progressive muscle weakness and atrophy. Several molecular pathways have been implicated, such as glutamate-mediated excitotoxicity, defects in cytoskeletal dynamics and axonal transport, disruption of RNA metabolism, and impairments in proteostasis. ALS is associated with protein accumulation in the cytoplasm of cells undergoing neurodegeneration, which is a hallmark of the disease. In this review, we focus on mechanisms of proteostasis, particularly protein degradation, and discuss how they are related to the genetics of ALS. Indeed, the genetic bases of the disease with the implication of more than 30 genes associated with familial ALS to date, together with the important increase in understanding of endoplasmic reticulum (ER) stress, proteasomal degradation, and autophagy, allow researchers to better understand the mechanisms underlying the selective death of motor neurons in ALS. It is clear that defects in proteostasis are involved in this type of cellular degeneration, but whether or not these mechanisms are primary causes or merely consequential remains to be clearly demonstrated. Novel cellular and animal models allowing chronic expression of mutant proteins, for example, are required. Further studies linking genetic discoveries in ALS to mechanisms of protein clearance will certainly be crucial in order to accelerate translational and clinical research towards new therapeutic targets and strategies.

Keywords

Amyotrophic lateral sclerosis Genes Ubiquitin Proteasome Autophagy Aggregates 

Abbreviations

MN

Motor neuron

ALS

Amyotrophic lateral sclerosis

UPS

Ubiquitin proteasome system

ERAD

Endoplasmic reticulum-associated protein degradation

CAP

Chaperone-assisted proteasomal degradation

CMA

Chaperone-mediated autophagy

CASA

Chaperone-assisted selective autophagy

Ub

Ubiquitin

SUMO

Small ubiquitin-like modifier

SG

Stress granules

C9ORF72

Chromosome 9 open reading frame 72

SOD1

Superoxide dismutase 1

TARDBP

TAR DNA-binding protein

FUS

Fused in sarcoma

OPTN

Optineurin

SQSTM1

p62/sequestosome1

VCP

Valosin-containing protein

UBQNL2

Ubiquilin 2

VAPB

Vesicle-associated membrane protein-associated protein B/C

TBK1

TANK-binding kinase 1

FIG4

FIG4 phosphoinositide 5-phosphatase

SIGMAR1

Sigma non-opioid intracellular receptor 1

CCNF

Cyclin F

PDIA

Protein disulfide isomerase family A member

Notes

Acknowledgments

This work is supported by the Region Centre Val-de-Loire, the Association ARSLA, and the MAbImprove Laboratoire d’excellence (Labex).

References

  1. 1.
    Marin B, Boumédiene F, Logroscino G et al (2016) Variation in worldwide incidence of amyotrophic lateral sclerosis: a meta-analysis. Int J Epidemiol.  https://doi.org/10.1093/ije/dyw061
  2. 2.
    Taylor JP, Brown RH, Cleveland DW (2016) Decoding ALS: from genes to mechanism. Nature 539:197–206.  https://doi.org/10.1038/nature20413PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Brown RH, Al-Chalabi A (2017) Amyotrophic lateral sclerosis. N Engl J Med 377:162–172.  https://doi.org/10.1056/NEJMra1603471PubMedCrossRefGoogle Scholar
  4. 4.
    Forman MS, Trojanowski JQ, Lee VM-Y (2004) Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs. Nat Med 10:1055–1063.  https://doi.org/10.1038/nm1113PubMedCrossRefGoogle Scholar
  5. 5.
    Oda M, Akagawa N, Tabuchi Y, Tanabe H (1978) A sporadic juvenile case of the amyotrophic lateral sclerosis with neuronal intracytoplasmic inclusions. Acta Neuropathol (Berl) 44:211–216CrossRefGoogle Scholar
  6. 6.
    Murayama S, Ookawa Y, Mori H et al (1989) Immunocytochemical and ultrastructural study of Lewy body-like hyaline inclusions in familial amyotrophic lateral sclerosis. Acta Neuropathol (Berl) 78:143–152CrossRefGoogle Scholar
  7. 7.
    Matsumoto S, Hirano A, Goto S (1990) Ubiquitin-immunoreactive filamentous inclusions in anterior horn cells of Guamanian and non-Guamanian amyotrophic lateral sclerosis. Acta Neuropathol (Berl) 80:233–238CrossRefGoogle Scholar
  8. 8.
    Blokhuis AM, Groen EJN, Koppers M et al (2013) Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathol (Berl) 125:777–794.  https://doi.org/10.1007/s00401-013-1125-6CrossRefGoogle Scholar
  9. 9.
    Neumann M, Sampathu DM, Kwong LK et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133.  https://doi.org/10.1126/science.1134108PubMedCrossRefGoogle Scholar
  10. 10.
    Mackenzie IRA, Bigio EH, Ince PG et al (2007) Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann Neurol 61:427–434.  https://doi.org/10.1002/ana.21147PubMedCrossRefGoogle Scholar
  11. 11.
    Tan C-F, Eguchi H, Tagawa A et al (2007) TDP-43 immunoreactivity in neuronal inclusions in familial amyotrophic lateral sclerosis with or without SOD1 gene mutation. Acta Neuropathol (Berl) 113:535–542.  https://doi.org/10.1007/s00401-007-0206-9CrossRefGoogle Scholar
  12. 12.
    Kabashi E, Valdmanis PN, Dion P et al (2008) TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 40:572–574.  https://doi.org/10.1038/ng.132PubMedCrossRefGoogle Scholar
  13. 13.
    Sreedharan J, Blair IP, Tripathi VB et al (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319:1668–1672.  https://doi.org/10.1126/science.1154584PubMedCrossRefGoogle Scholar
  14. 14.
    Kedersha N, Stoecklin G, Ayodele M et al (2005) Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol 169:871–884.  https://doi.org/10.1083/jcb.200502088PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Hara T, Nakamura K, Matsui M et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889.  https://doi.org/10.1038/nature04724PubMedCrossRefGoogle Scholar
  16. 16.
    Mizushima N (2010) The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol 22:132–139.  https://doi.org/10.1016/j.ceb.2009.12.004PubMedCrossRefGoogle Scholar
  17. 17.
    Amick J, Roczniak-Ferguson A, Ferguson SM (2016) C9orf72 binds SMCR8, localizes to lysosomes, and regulates mTORC1 signaling. Mol Biol Cell 27:3040–3051.  https://doi.org/10.1091/mbc.E16-01-0003PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Sullivan PM, Zhou X, Robins AM et al (2016) The ALS/FTLD associated protein C9orf72 associates with SMCR8 and WDR41 to regulate the autophagy-lysosome pathway. Acta Neuropathol Commun 4:51.  https://doi.org/10.1186/s40478-016-0324-5PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Schröder B, Wrocklage C, Pan C et al (2007) Integral and associated lysosomal membrane proteins. Traffic Cph Den 8:1676–1686.  https://doi.org/10.1111/j.1600-0854.2007.00643.xCrossRefGoogle Scholar
  20. 20.
    Lee DY, Brown EJ (2012) Ubiquilins in the crosstalk among proteolytic pathways. Biol Chem 393:441–447.  https://doi.org/10.1515/hsz-2012-0120PubMedCrossRefGoogle Scholar
  21. 21.
    Williams KL, Warraich ST, Yang S et al (2012) UBQLN2/ubiquilin 2 mutation and pathology in familial amyotrophic lateral sclerosis. Neurobiol Aging 33:2527.e3–2527.e10.  https://doi.org/10.1016/j.neurobiolaging.2012.05.008CrossRefGoogle Scholar
  22. 22.
    Buchan JR, Kolaitis R-M, Taylor JP, Parker R (2013) Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 153:1461–1474.  https://doi.org/10.1016/j.cell.2013.05.037PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Vance C, Rogelj B, Hortobágyi T et al (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323:1208–1211.  https://doi.org/10.1126/science.1165942PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Neumann M, Rademakers R, Roeber S et al (2009) A new subtype of frontotemporal lobar degeneration with FUS pathology. Brain J Neurol 132:2922–2931.  https://doi.org/10.1093/brain/awp214CrossRefGoogle Scholar
  25. 25.
    Fecto F, Yan J, Vemula S et al (2011) SQstm1 mutations in familial and sporadic amyotrophic lateral sclerosis. Arch Neurol 68:1440–1446.  https://doi.org/10.1001/archneurol.2011.250PubMedCrossRefGoogle Scholar
  26. 26.
    Rosen DR, Siddique T, Patterson D et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62.  https://doi.org/10.1038/362059a0PubMedCrossRefGoogle Scholar
  27. 27.
    Al-Chalabi A, van den Berg LH, Veldink J (2017) Gene discovery in amyotrophic lateral sclerosis: implications for clinical management. Nat Rev Neurol 13:96–104.  https://doi.org/10.1038/nrneurol.2016.182PubMedCrossRefGoogle Scholar
  28. 28.
    Iida A, Hosono N, Sano M, et al. (2012) Novel deletion mutations of OPTN in amyotrophic lateral sclerosis in Japanese. Neurobiol Aging 33:1843.e19-24. doi:  https://doi.org/10.1016/j.neurobiolaging.2011.12.037
  29. 29.
    Tashiro Y, Urushitani M, Inoue H et al (2012) Motor neuron-specific disruption of proteasomes, but not autophagy, replicates amyotrophic lateral sclerosis. J Biol Chem 287:42984–42994.  https://doi.org/10.1074/jbc.M112.417600PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Xia D, Tang WK, Ye Y (2016) Structure and function of the AAA+ ATPase p97/Cdc48p. Gene 583:64–77.  https://doi.org/10.1016/j.gene.2016.02.042PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Oakes JA, Davies MC, Collins MO (2017) TBK1: a new player in ALS linking autophagy and neuroinflammation. Mol Brain 10:5.  https://doi.org/10.1186/s13041-017-0287-xPubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Nishimura AL, Mitne-Neto M, Silva HCA et al (2004) A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am J Hum Genet 75:822–831.  https://doi.org/10.1086/425287PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Ciechanover A, Heller H, Elias S et al (1980) ATP-dependent conjugation of reticulocyte proteins with the polypeptide required for protein degradation. Proc Natl Acad Sci U S A 77:1365–1368PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Komander D (2009) The emerging complexity of protein ubiquitination. Biochem Soc Trans 37:937–953.  https://doi.org/10.1042/BST0370937PubMedCrossRefGoogle Scholar
  35. 35.
    Michelle C, Vourc’h P, Mignon L, Andres CR (2009) What was the set of ubiquitin and ubiquitin-like conjugating enzymes in the eukaryote common ancestor? J Mol Evol 68:616–628.  https://doi.org/10.1007/s00239-009-9225-6PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Li W, Bengtson MH, Ulbrich A et al (2008) Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle’s dynamics and signaling. PLoS One.  https://doi.org/10.1371/journal.pone.0001487
  37. 37.
    Natarajan C, Takeda K (2017) Regulation of various DNA repair pathways by E3 ubiquitin ligases. J Cancer Res Ther 13:157–169.  https://doi.org/10.4103/0973-1482.204879PubMedCrossRefGoogle Scholar
  38. 38.
    Cheroni C, Peviani M, Cascio P et al (2005) Accumulation of human SOD1 and ubiquitinated deposits in the spinal cord of SOD1G93A mice during motor neuron disease progression correlates with a decrease of proteasome. Neurobiol Dis 18:509–522.  https://doi.org/10.1016/j.nbd.2004.12.007PubMedCrossRefGoogle Scholar
  39. 39.
    Puttaparthi K, Wojcik C, Rajendran B et al (2003) Aggregate formation in the spinal cord of mutant SOD1 transgenic mice is reversible and mediated by proteasomes. J Neurochem 87:851–860PubMedCrossRefGoogle Scholar
  40. 40.
    Urushitani M, Kurisu J, Tateno M et al (2004) CHIP promotes proteasomal degradation of familial ALS-linked mutant SOD1 by ubiquitinating Hsp/Hsc70. J Neurochem 90:231–244.  https://doi.org/10.1111/j.1471-4159.2004.02486.xPubMedCrossRefGoogle Scholar
  41. 41.
    Urushitani M, Kurisu J, Tsukita K, Takahashi R (2002) Proteasomal inhibition by misfolded mutant superoxide dismutase 1 induces selective motor neuron death in familial amyotrophic lateral sclerosis. J Neurochem 83:1030–1042PubMedCrossRefGoogle Scholar
  42. 42.
    Leigh PN, Whitwell H, Garofalo O et al (1991) Ubiquitin-immunoreactive intraneuronal inclusions in amyotrophic lateral sclerosis. Morphology, distribution, and specificity. Brain J Neurol 114(Pt 2):775–788CrossRefGoogle Scholar
  43. 43.
    Migheli A, Autilio-Gambetti L, Gambetti P et al (1990) Ubiquitinated filamentous inclusions in spinal cord of patients with motor neuron disease. Neurosci Lett 114:5–10PubMedCrossRefGoogle Scholar
  44. 44.
    Hyun D-H, Lee M, Halliwell B, Jenner P (2003) Proteasomal inhibition causes the formation of protein aggregates containing a wide range of proteins, including nitrated proteins. J Neurochem 86:363–373PubMedCrossRefGoogle Scholar
  45. 45.
    Kabashi E, Agar JN, Taylor DM et al (2004) Focal dysfunction of the proteasome: a pathogenic factor in a mouse model of amyotrophic lateral sclerosis. J Neurochem 89:1325–1335.  https://doi.org/10.1111/j.1471-4159.2004.02453.xPubMedCrossRefGoogle Scholar
  46. 46.
    Cheroni C, Marino M, Tortarolo M et al (2009) Functional alterations of the ubiquitin-proteasome system in motor neurons of a mouse model of familial amyotrophic lateral sclerosis. Hum Mol Genet 18:82–96.  https://doi.org/10.1093/hmg/ddn319PubMedCrossRefGoogle Scholar
  47. 47.
    Tsuji S, Kikuchi S, Shinpo K et al (2005) Proteasome inhibition induces selective motor neuron death in organotypic slice cultures. J Neurosci Res 82:443–451.  https://doi.org/10.1002/jnr.20665PubMedCrossRefGoogle Scholar
  48. 48.
    Deng H-X, Chen W, Hong S-T et al (2011) Mutations in UBQLN2 cause dominant X-linked juvenile and adult-ons et al. S and ALS/dementia. Nature 477:211–215.  https://doi.org/10.1038/nature10353PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Johnson JO, Mandrioli J, Benatar M et al (2010) Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron 68:857–864.  https://doi.org/10.1016/j.neuron.2010.11.036PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Gallagher PS, Clowes Candadai SV, Gardner RG (2014) The requirement for Cdc48/p97 in nuclear protein quality control degradation depends on the substrate and correlates with substrate insolubility. J Cell Sci 127:1980–1991.  https://doi.org/10.1242/jcs.141838PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Christianson JC, Ye Y (2014) Cleaning up in the endoplasmic reticulum: ubiquitin in charge. Nat Struct Mol Biol 21:325–335.  https://doi.org/10.1038/nsmb.2793PubMedCrossRefGoogle Scholar
  52. 52.
    Stolz A, Wolf DH (2010) Endoplasmic reticulum associated protein degradation: a chaperone assisted journey to hell. Biochim Biophys Acta 1803:694–705.  https://doi.org/10.1016/j.bbamcr.2010.02.005PubMedCrossRefGoogle Scholar
  53. 53.
    Oyanagi K, Yamazaki M, Takahashi H et al (2008) Spinal anterior horn cells in sporadic amyotrophic lateral sclerosis show ribosomal detachment from, and cisternal distention of the rough endoplasmic reticulum. Neuropathol Appl Neurobiol 34:650–658.  https://doi.org/10.1111/j.1365-2990.2008.00941.xPubMedCrossRefGoogle Scholar
  54. 54.
    Lautenschlaeger J, Prell T, Grosskreutz J (2012) Endoplasmic reticulum stress and the ER mitochondrial calcium cycle in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Off Publ World Fed Neurol Res Group Mot Neuron Dis 13:166–177.  https://doi.org/10.3109/17482968.2011.641569Google Scholar
  55. 55.
    Rozas P, Bargsted L, Martínez F et al (2017) The ER proteostasis network in ALS: determining the differential motoneuron vulnerability. Neurosci Lett 636:9–15.  https://doi.org/10.1016/j.neulet.2016.04.066PubMedCrossRefGoogle Scholar
  56. 56.
    Grosskreutz J, Van Den Bosch L, Keller BU (2010) Calcium dysregulation in amyotrophic lateral sclerosis. Cell Calcium 47:165–174.  https://doi.org/10.1016/j.ceca.2009.12.002PubMedCrossRefGoogle Scholar
  57. 57.
    Soo KY, Halloran M, Sundaramoorthy V et al (2015) Rab1-dependent ER-Golgi transport dysfunction is a common pathogenic mechanism in SOD1, TDP-43 and FUS-associated ALS. Acta Neuropathol (Berl) 130:679–697.  https://doi.org/10.1007/s00401-015-1468-2CrossRefGoogle Scholar
  58. 58.
    Liebelt F, Vertegaal ACO (2016) Ubiquitin-dependent and independent roles of SUMO in proteostasis. Am J Physiol Cell Physiol 311:C284–C296.  https://doi.org/10.1152/ajpcell.00091.2016PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Schimmel J, Larsen KM, Matic I et al (2008) The ubiquitin-proteasome system is a key component of the SUMO-2/3 cycle. Mol Cell Proteomics MCP 7:2107–2122.  https://doi.org/10.1074/mcp.M800025-MCP200PubMedCrossRefGoogle Scholar
  60. 60.
    Fei E, Jia N, Yan M et al (2006) SUMO-1 modification increases human SOD1 stability and aggregation. Biochem Biophys Res Commun 347:406–412.  https://doi.org/10.1016/j.bbrc.2006.06.092PubMedCrossRefGoogle Scholar
  61. 61.
    Niikura T, Kita Y, Abe Y (2014) SUMO3 modification accelerates the aggregation of ALS-linked SOD1 mutants. PLoS One 9:e101080.  https://doi.org/10.1371/journal.pone.0101080PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Dangoumau A, Marouillat S, Burlaud Gaillard J et al (2015) Inhibition of pathogenic mutant SOD1 aggregation in cultured motor neuronal cells by prevention of its SUMOylation on lysine 75. Neurodegener Dis.  https://doi.org/10.1159/000439254
  63. 63.
    Dangoumau A, Veyrat-Durebex C, Blasco H et al (2013) Protein SUMOylation, an emerging pathway in amyotrophic lateral sclerosis. Int J Neurosci 123:366–374.  https://doi.org/10.3109/00207454.2012.761984PubMedCrossRefGoogle Scholar
  64. 64.
    Oh S-M, Liu Z, Okada M et al (2010) Ebp1 sumoylation, regulated by TLS/FUS E3 ligase, is required for its anti-proliferative activity. Oncogene 29:1017–1030.  https://doi.org/10.1038/onc.2009.411PubMedCrossRefGoogle Scholar
  65. 65.
    Arndt V, Rogon C, Höhfeld J (2007) To be, or not to be--molecular chaperones in protein degradation. Cell Mol Life Sci CMLS 64:2525–2541.  https://doi.org/10.1007/s00018-007-7188-6PubMedCrossRefGoogle Scholar
  66. 66.
    Matsumoto G, Stojanovic A, Holmberg CI et al (2005) Structural properties and neuronal toxicity of amyotrophic lateral sclerosis-associated Cu/Zn superoxide dismutase 1 aggregates. J Cell Biol 171:75–85.  https://doi.org/10.1083/jcb.200504050PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Komatsu M, Waguri S, Chiba T et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884.  https://doi.org/10.1038/nature04723PubMedCrossRefGoogle Scholar
  68. 68.
    Rea SL, Majcher V, Searle MS, Layfield R (2014) SQSTM1 mutations—bridging Paget disease of bone and ALS/FTLD. Exp Cell Res 325:27–37.  https://doi.org/10.1016/j.yexcr.2014.01.020PubMedCrossRefGoogle Scholar
  69. 69.
    Webster CP, Smith EF, Bauer CS et al (2016) The C9orf72 protein interacts with Rab1a and the ULK1 complex to regulate initiation of autophagy. EMBO J 35:1656–1676.  https://doi.org/10.15252/embj.201694401PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Gal J, Ström A-L, Kwinter DM et al (2009) Sequestosome 1/p62 links familial ALS mutant SOD1 to LC3 via an ubiquitin-independent mechanism. J Neurochem 111:1062–1073.  https://doi.org/10.1111/j.1471-4159.2009.06388.xPubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Wild P, Farhan H, McEwan DG et al (2011) Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333:228–233.  https://doi.org/10.1126/science.1205405PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Freischmidt A, Wieland T, Richter B et al (2015) Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat Neurosci 18:631–636.  https://doi.org/10.1038/nn.4000PubMedCrossRefGoogle Scholar
  73. 73.
    Ji CH, Kwon YT (2017) Crosstalk and interplay between the ubiquitin-proteasome system and autophagy. Mol Cells 40:441–449.  https://doi.org/10.14348/molcells.2017.0115PubMedPubMedCentralGoogle Scholar
  74. 74.
    Selimovic D, Porzig BBOW, El-Khattouti A et al (2013) Bortezomib/proteasome inhibitor triggers both apoptosis and autophagy-dependent pathways in melanoma cells. Cell Signal 25:308–318.  https://doi.org/10.1016/j.cellsig.2012.10.004PubMedCrossRefGoogle Scholar
  75. 75.
    Matsumoto G, Wada K, Okuno M et al (2011) Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins. Mol Cell 44:279–289.  https://doi.org/10.1016/j.molcel.2011.07.039PubMedCrossRefGoogle Scholar
  76. 76.
    Ferreira JV, Soares AR, Ramalho JS et al (2015) K63 linked ubiquitin chain formation is a signal for HIF1A degradation by chaperone-mediated autophagy. Sci Rep 5:10210.  https://doi.org/10.1038/srep10210PubMedCrossRefGoogle Scholar
  77. 77.
    Renton AE, Majounie E, Waite A et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–268.  https://doi.org/10.1016/j.neuron.2011.09.010PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    DeJesus-Hernandez M, Mackenzie IR, Boeve BF et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256.  https://doi.org/10.1016/j.neuron.2011.09.011PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Majounie E, Renton AE, Mok K et al (2012) Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol 11:323–330.  https://doi.org/10.1016/S1474-4422(12)70043-1PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Liu Y, Pattamatta A, Zu T et al (2016) C9orf72 BAC mouse model with motor deficits and neurodegenerative features of ALS/FTD. Neuron 90:521–534.  https://doi.org/10.1016/j.neuron.2016.04.005PubMedCrossRefGoogle Scholar
  81. 81.
    Schipper LJ, Raaphorst J, Aronica E et al (2016) Prevalence of brain and spinal cord inclusions, including dipeptide repeat proteins, in patients with the C9ORF72 hexanucleotide repeat expansion: a systematic neuropathological review. Neuropathol Appl Neurobiol 42:547–560.  https://doi.org/10.1111/nan.12284PubMedCrossRefGoogle Scholar
  82. 82.
    Koppers M, Blokhuis AM, Westeneng H-J et al (2015) C9orf72 ablation in mice does not cause motor neuron degeneration or motor deficits. Ann Neurol 78:426–438.  https://doi.org/10.1002/ana.24453PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Chaineau M, Ioannou MS, McPherson PS (2013) Rab35: GEFs, GAPs and effectors. Traffic Cph Den 14:1109–1117.  https://doi.org/10.1111/tra.12096Google Scholar
  84. 84.
    Amick J, Ferguson SM (2017) C9orf72: at the intersection of lysosome cell biology and neurodegenerative disease. Traffic Cph Den.  https://doi.org/10.1111/tra.12477
  85. 85.
    Zu T, Liu Y, Bañez-Coronel M et al (2013) RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia. Proc Natl Acad Sci U S A 110:E4968–E4977.  https://doi.org/10.1073/pnas.1315438110PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Mori K, Arzberger T, Grässer FA et al (2013) Bidirectional transcripts of the expanded C9orf72 hexanucleotide repeat are translated into aggregating dipeptide repeat proteins. Acta Neuropathol (Berl) 126:881–893.  https://doi.org/10.1007/s00401-013-1189-3CrossRefGoogle Scholar
  87. 87.
    Türk M, Haaker G, Winter L et al (2014) C9ORF72-ALS: P62- and ubiquitin-aggregation pathology in skeletal muscle. Muscle Nerve 50:454–455.  https://doi.org/10.1002/mus.24283PubMedCrossRefGoogle Scholar
  88. 88.
    Serpente M, Fenoglio C, Cioffi SMG et al (2015) Profiling of ubiquitination pathway genes in peripheral cells from patients with frontotemporal dementia due to C9ORF72 and GRN mutations. Int J Mol Sci 16:1385–1394.  https://doi.org/10.3390/ijms16011385PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Gupta R, Lan M, Mojsilovic-Petrovic J et al (2017) The proline/arginine dipeptide from hexanucleotide repeat expanded C9ORF72 inhibits the proteasome. eNeuro.  https://doi.org/10.1523/ENEURO.0249-16.2017
  90. 90.
    Gomez-Deza J, Lee Y-B, Troakes C et al (2015) Dipeptide repeat protein inclusions are rare in the spinal cord and almost absent from motor neurons in C9ORF72 mutant amyotrophic lateral sclerosis and are unlikely to cause their degeneration. Acta Neuropathol Commun 3:38.  https://doi.org/10.1186/s40478-015-0218-yPubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Zhang Y-J, Jansen-West K, Xu Y-F et al (2014) Aggregation-prone c9FTD/ALS poly(GA) RAN-translated proteins cause neurotoxicity by inducing ER stress. Acta Neuropathol (Berl) 128:505–524.  https://doi.org/10.1007/s00401-014-1336-5CrossRefGoogle Scholar
  92. 92.
    Al-Sarraj S, King A, Troakes C et al (2011) p62 positive, TDP-43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define the pathology of C9orf72-linked FTLD and MND/ALS. Acta Neuropathol (Berl) 122:691–702.  https://doi.org/10.1007/s00401-011-0911-2CrossRefGoogle Scholar
  93. 93.
    O’Rourke JG, Bogdanik L, Yáñez A et al (2016) C9orf72 is required for proper macrophage and microglial function in mice. Science 351:1324–1329.  https://doi.org/10.1126/science.aaf1064PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Webster CP, Smith EF, Grierson AJ, De Vos KJ (2016) C9orf72 plays a central role in Rab GTPase-dependent regulation of autophagy. Small GTPases 1–10.  https://doi.org/10.1080/21541248.2016.1240495
  95. 95.
    Radunovíc A, Leigh PN (1996) Cu/Zn superoxide dismutase gene mutations in amyotrophic lateral sclerosis: correlation between genotype and clinical features. J Neurol Neurosurg Psychiatry 61:565PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Reaume AG, Elliott JL, Hoffman EK et al (1996) Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet 13:43–47.  https://doi.org/10.1038/ng0596-43PubMedCrossRefGoogle Scholar
  97. 97.
    Tu PH, Raju P, Robinson KA et al (1996) Transgenic mice carrying a human mutant superoxide dismutase transgene develop neuronal cytoskeletal pathology resembling human amyotrophic lateral sclerosis lesions. Proc Natl Acad Sci U S A 93:3155–3160PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Shibata N, Asayama K, Hirano A, Kobayashi M (1996) Immunohistochemical study on superoxide dismutases in spinal cords from autopsied patients with amyotrophic lateral sclerosis. Dev Neurosci 18:492–498PubMedCrossRefGoogle Scholar
  99. 99.
    Bruijn LI, Becher MW, Lee MK et al (1997) ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 18:327–338PubMedCrossRefGoogle Scholar
  100. 100.
    Dangoumau A, Verschueren A, Hammouche E et al (2014) Novel SOD1 mutation p.V31A identified with a slowly progressive form of amyotrophic lateral sclerosis. Neurobiol Aging 35:266.e1–266.e4.  https://doi.org/10.1016/j.neurobiolaging.2013.07.012CrossRefGoogle Scholar
  101. 101.
    Valentine JS, Hart PJ (2003) Misfolded CuZnSOD and amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 100:3617–3622.  https://doi.org/10.1073/pnas.0730423100PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    McAlary L, Aquilina JA, Yerbury JJ (2016) Susceptibility of mutant SOD1 to form a destabilized monomer predicts cellular aggregation and toxicity but not in vitro aggregation propensity. Front Neurosci 10:499.  https://doi.org/10.3389/fnins.2016.00499PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Nishitoh H, Kadowaki H, Nagai A et al (2008) ALS-linked mutant SOD1 induces ER stress- and ASK1-dependent motor neuron death by targeting Derlin-1. Genes Dev 22:1451–1464.  https://doi.org/10.1101/gad.1640108PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Hetz C, Mollereau B (2014) Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases. Nat Rev Neurosci 15:233–249.  https://doi.org/10.1038/nrn3689PubMedCrossRefGoogle Scholar
  105. 105.
    Niwa J-I, Ishigaki S, Hishikawa N et al (2002) Dorfin ubiquitylates mutant SOD1 and prevents mutant SOD1-mediated neurotoxicity. J Biol Chem 277:36793–36798.  https://doi.org/10.1074/jbc.M206559200PubMedCrossRefGoogle Scholar
  106. 106.
    Sone J, Niwa J, Kawai K et al (2010) Dorfin ameliorates phenotypes in a transgenic mouse model of amyotrophic lateral sclerosis. J Neurosci Res 88:123–135.  https://doi.org/10.1002/jnr.22175PubMedCrossRefGoogle Scholar
  107. 107.
    Yung C, Sha D, Li L, Chin L-S (2016) Parkin protects against misfolded SOD1 toxicity by promoting its aggresome formation and autophagic clearance. Mol Neurobiol 53:6270–6287.  https://doi.org/10.1007/s12035-015-9537-zPubMedCrossRefGoogle Scholar
  108. 108.
    Stürner E, Behl C (2017) The role of the multifunctional BAG3 protein in cellular protein quality control and in disease. Front Mol Neurosci 10:177.  https://doi.org/10.3389/fnmol.2017.00177PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Chhangani D, Endo F, Amanullah A et al (2016) Mahogunin ring finger 1 confers cytoprotection against mutant SOD1 aggresomes and is defective in an ALS mouse model. Neurobiol Dis 86:16–28.  https://doi.org/10.1016/j.nbd.2015.11.017PubMedCrossRefGoogle Scholar
  110. 110.
    Hadano S, Mitsui S, Pan L et al (2016) Functional links between SQSTM1 and ALS2 in the pathogenesis of ALS: cumulative impact on the protection against mutant SOD1-mediated motor dysfunction in mice. Hum Mol Genet 25:3321–3340.  https://doi.org/10.1093/hmg/ddw180PubMedCrossRefGoogle Scholar
  111. 111.
    Daoud H, Valdmanis PN, Kabashi E et al (2009) Contribution of TARDBP mutations to sporadic amyotrophic lateral sclerosis. J Med Genet 46:112–114.  https://doi.org/10.1136/jmg.2008.062463PubMedCrossRefGoogle Scholar
  112. 112.
    Millecamps S, Salachas F, Cazeneuve C et al (2010) SOD1, ANG, VAPB, TARDBP, and FUS mutations in familial amyotrophic lateral sclerosis: genotype-phenotype correlations. J Med Genet 47:554–560.  https://doi.org/10.1136/jmg.2010.077180PubMedCrossRefGoogle Scholar
  113. 113.
    Scotter EL, Chen H-J, Shaw CE (2015) TDP-43 proteinopathy and ALS: insights into disease mechanisms and therapeutic targets. Neurother J Am Soc Exp Neurother 12:352–363.  https://doi.org/10.1007/s13311-015-0338-xCrossRefGoogle Scholar
  114. 114.
    Lin G, Mao D, Bellen HJ (2017) Amyotrophic lateral sclerosis pathogenesis converges on defects in protein homeostasis associated with TDP-43 mislocalization and proteasome-mediated degradation overload. Curr Top Dev Biol 121:111–171.  https://doi.org/10.1016/bs.ctdb.2016.07.004PubMedCrossRefGoogle Scholar
  115. 115.
    Farrawell NE, Lambert-Smith IA, Warraich ST et al (2015) Distinct partitioning of ALS associated TDP-43, FUS and SOD1 mutants into cellular inclusions. Sci Rep 5:13416.  https://doi.org/10.1038/srep13416PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Edbauer D, Haass C (2016) An amyloid-like cascade hypothesis for C9orf72 ALS/FTD. Curr Opin Neurobiol 36:99–106.  https://doi.org/10.1016/j.conb.2015.10.009PubMedCrossRefGoogle Scholar
  117. 117.
    Araki W, Minegishi S, Motoki K et al (2014) Disease-associated mutations of TDP-43 promote turnover of the protein through the proteasomal pathway. Mol Neurobiol 50:1049–1058.  https://doi.org/10.1007/s12035-014-8644-6PubMedCrossRefGoogle Scholar
  118. 118.
    Hans F, Fiesel FC, Strong JC et al (2014) UBE2E ubiquitin-conjugating enzymes and ubiquitin isopeptidase Y regulate TDP-43 protein ubiquitination. J Biol Chem 289:19164–19179.  https://doi.org/10.1074/jbc.M114.561704PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Lamark T, Johansen T (2010) Autophagy: links with the proteasome. Curr Opin Cell Biol 22:192–198.  https://doi.org/10.1016/j.ceb.2009.11.002PubMedCrossRefGoogle Scholar
  120. 120.
    Scotter EL, Vance C, Nishimura AL et al (2014) Differential roles of the ubiquitin proteasome system and autophagy in the clearance of soluble and aggregated TDP-43 species. J Cell Sci 127:1263–1278.  https://doi.org/10.1242/jcs.140087PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Bose JK, Huang C-C, Shen C-KJ (2011) Regulation of autophagy by neuropathological protein TDP-43. J Biol Chem 286:44441–44448.  https://doi.org/10.1074/jbc.M111.237115PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Barmada SJ, Serio A, Arjun A et al (2014) Autophagy induction enhances TDP43 turnover and survival in neuronal ALS models. Nat Chem Biol 10:677–685.  https://doi.org/10.1038/nchembio.1563PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Monahan Z, Shewmaker F, Pandey UB (2016) Stress granules at the intersection of autophagy and ALS. Brain Res 1649:189–200.  https://doi.org/10.1016/j.brainres.2016.05.022PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Afroz T, Hock E-M, Ernst P et al (2017) Functional and dynamic polymerization of the ALS-linked protein TDP-43 antagonizes its pathologic aggregation. Nat Commun 8:45.  https://doi.org/10.1038/s41467-017-00062-0PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Kwiatkowski TJ, Bosco DA, Leclerc AL et al (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323:1205–1208.  https://doi.org/10.1126/science.1166066PubMedCrossRefGoogle Scholar
  126. 126.
    Deng H, Gao K, Jankovic J (2014) The role of FUS gene variants in neurodegenerative diseases. Nat Rev Neurol 10:337–348.  https://doi.org/10.1038/nrneurol.2014.78PubMedCrossRefGoogle Scholar
  127. 127.
    Kino Y, Washizu C, Kurosawa M et al (2015) FUS/TLS deficiency causes behavioral and pathological abnormalities distinct from amyotrophic lateral sclerosis. Acta Neuropathol Commun.  https://doi.org/10.1186/s40478-015-0202-6
  128. 128.
    Shang Y, Huang EJ (2016) Mechanisms of FUS mutations in familial amyotrophic lateral sclerosis. Brain Res 1647:65–78.  https://doi.org/10.1016/j.brainres.2016.03.036PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Vance C, Scotter EL, Nishimura AL et al (2013) ALS mutant FUS disrupts nuclear localization and sequesters wild-type FUS within cytoplasmic stress granules. Hum Mol Genet 22:2676.  https://doi.org/10.1093/hmg/ddt117PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Daigle JG, Lanson NA, Smith RB et al (2013) RNA-binding ability of FUS regulates neurodegeneration, cytoplasmic mislocalization and incorporation into stress granules associated with FUS carrying ALS-linked mutations. Hum Mol Genet 22:1193–1205.  https://doi.org/10.1093/hmg/dds526PubMedCrossRefGoogle Scholar
  131. 131.
    Ito D, Suzuki N (2011) Conjoint pathologic cascades mediated by ALS/FTLD-U linked RNA-binding proteins TDP-43 and FUS. Neurology 77:1636–1643.  https://doi.org/10.1212/WNL.0b013e3182343365PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Sun Z, Diaz Z, Fang X et al (2011) Molecular determinants and genetic modifiers of aggregation and toxicity for the ALS disease protein FUS/TLS. PLoS Biol 9:e1000614.  https://doi.org/10.1371/journal.pbio.1000614PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Shiihashi G, Ito D, Yagi T et al (2016) Mislocated FUS is sufficient for gain-of-toxic-function amyotrophic lateral sclerosis phenotypes in mice. Brain J Neurol 139:2380–2394.  https://doi.org/10.1093/brain/aww161CrossRefGoogle Scholar
  134. 134.
    Ryu H-H, Jun M-H, Min K-J et al (2014) Autophagy regulates amyotrophic lateral sclerosis-linked fused in sarcoma-positive stress granules in neurons. Neurobiol Aging 35:2822–2831.  https://doi.org/10.1016/j.neurobiolaging.2014.07.026PubMedCrossRefGoogle Scholar
  135. 135.
    Soo KY, Sultana J, King AE et al (2015) ALS-associated mutant FUS inhibits macroautophagy which is restored by overexpression of Rab1. Cell Death Discov 1:15030.  https://doi.org/10.1038/cddiscovery.2015.30PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Rezaie T, Child A, Hitchings R et al (2002) Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science 295:1077–1079.  https://doi.org/10.1126/science.1066901PubMedCrossRefGoogle Scholar
  137. 137.
    Maruyama H, Morino H, Ito H et al (2010) Mutations of optineurin in amyotrophic lateral sclerosis. Nature 465:223–226.  https://doi.org/10.1038/nature08971PubMedCrossRefGoogle Scholar
  138. 138.
    Del Bo R, Tiloca C, Pensato V et al (2011) Novel optineurin mutations in patients with familial and sporadic amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 82:1239–1243.  https://doi.org/10.1136/jnnp.2011.242313PubMedCrossRefGoogle Scholar
  139. 139.
    Mao J, Xia Q, Liu C et al (2017) A critical role of Hrd1 in the regulation of optineurin degradation and aggresome formation. Hum Mol Genet.  https://doi.org/10.1093/hmg/ddx096
  140. 140.
    Li F, Xie X, Wang Y et al (2016) Structural insights into the interaction and disease mechanism of neurodegenerative disease-associated optineurin and TBK1 proteins. Nat Commun 7:12708.  https://doi.org/10.1038/ncomms12708PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Tumbarello DA, Waxse BJ, Arden SD et al (2012) Autophagy receptors link myosin VI to autophagosomes to mediate Tom1-dependent autophagosome maturation and fusion with the lysosome. Nat Cell Biol 14:1024–1035.  https://doi.org/10.1038/ncb2589PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Ying H, Yue BYJT (2015) Optineurin: The autophagy connection. Exp Eye Res.  https://doi.org/10.1016/j.exer.2015.06.029
  143. 143.
    Shen W-C, Li H-Y, Chen G-C et al (2015) Mutations in the ubiquitin-binding domain of OPTN/optineurin interfere with autophagy-mediated degradation of misfolded proteins by a dominant-negative mechanism. Autophagy 11:685–700.  https://doi.org/10.4161/auto.36098PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Sundaramoorthy V, Walker AK, Tan V et al (2015) Defects in optineurin- and myosin VI-mediated cellular trafficking in amyotrophic lateral sclerosis. Hum Mol Genet 24:3830–3846.  https://doi.org/10.1093/hmg/ddv126PubMedCrossRefGoogle Scholar
  145. 145.
    Markovinovic A, Cimbro R, Ljutic T et al (2017) Optineurin in amyotrophic lateral sclerosis: Multifunctional adaptor protein at the crossroads of different neuroprotective mechanisms. Prog Neurobiol 154:1–20.  https://doi.org/10.1016/j.pneurobio.2017.04.005PubMedCrossRefGoogle Scholar
  146. 146.
    Nakazawa S, Oikawa D, Ishii R et al (2016) Linear ubiquitination is involved in the pathogenesis of optineurin-associated amyotrophic lateral sclerosis. Nat Commun 7:12547.  https://doi.org/10.1038/ncomms12547PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Le Ber I, Camuzat A, Guerreiro R et al (2013) SQstm1 mutations in french patients with frontotemporal dementia or frontotemporal dementia with amyotrophic lateral sclerosis. JAMA Neurol 70:1403–1410.  https://doi.org/10.1001/jamaneurol.2013.3849PubMedPubMedCentralGoogle Scholar
  148. 148.
    Teyssou E, Takeda T, Lebon V et al (2013) Mutations in SQSTM1 encoding p62 in amyotrophic lateral sclerosis: genetics and neuropathology. Acta Neuropathol (Berl) 125:511–522.  https://doi.org/10.1007/s00401-013-1090-0CrossRefGoogle Scholar
  149. 149.
    Vadlamudi RK, Joung I, Strominger JL, Shin J (1996) p62, a phosphotyrosine-independent ligand of the SH2 domain of p56lck, belongs to a new class of ubiquitin-binding proteins. J Biol Chem 271:20235–20237.  https://doi.org/10.1074/jbc.271.34.20235PubMedCrossRefGoogle Scholar
  150. 150.
    Pankiv S, Clausen TH, Lamark T et al (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–24145.  https://doi.org/10.1074/jbc.M702824200PubMedCrossRefGoogle Scholar
  151. 151.
    Goode A, Butler K, Long J et al (2016) Defective recognition of LC3B by mutant SQSTM1/p62 implicates impairment of autophagy as a pathogenic mechanism in ALS-FTLD. Autophagy 12:1094–1104.  https://doi.org/10.1080/15548627.2016.1170257PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Lattante S, de Calbiac H, Le Ber I et al (2015) Sqstm1 knock-down causes a locomotor phenotype ameliorated by rapamycin in a zebrafish model of ALS/FTLD. Hum Mol Genet 24:1682–1690.  https://doi.org/10.1093/hmg/ddu580PubMedCrossRefGoogle Scholar
  153. 153.
    Harder B, Jiang T, Wu T et al (2015) Molecular mechanisms of Nrf2 regulation and how these influence chemical modulation for disease intervention. Biochem Soc Trans 43:680–686.  https://doi.org/10.1042/BST20150020PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Katsuragi Y, Ichimura Y, Komatsu M (2015) p62/SQSTM1 functions as a signaling hub and an autophagy adaptor. FEBS J 282:4672–4678.  https://doi.org/10.1111/febs.13540PubMedCrossRefGoogle Scholar
  155. 155.
    Pan J-A, Sun Y, Jiang Y-P et al (2016) TRIM21 ubiquitylates SQSTM1/p62 and suppresses protein sequestration to regulate redox homeostasis. Mol Cell 61:720–733.  https://doi.org/10.1016/j.molcel.2016.02.007PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Watts GDJ, Wymer J, Kovach MJ et al (2004) Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet 36:377–381.  https://doi.org/10.1038/ng1332PubMedCrossRefGoogle Scholar
  157. 157.
    Ishigaki S, Hishikawa N, Niwa J et al (2004) Physical and functional interaction between dorfin and valosin-containing protein that are colocalized in ubiquitylated inclusions in neurodegenerative disorders. J Biol Chem 279:51376–51385.  https://doi.org/10.1074/jbc.M406683200PubMedCrossRefGoogle Scholar
  158. 158.
    Müller JMM, Deinhardt K, Rosewell I et al (2007) Targeted deletion of p97 (VCP/CDC48) in mouse results in early embryonic lethality. Biochem Biophys Res Commun 354:459–465.  https://doi.org/10.1016/j.bbrc.2006.12.206PubMedCrossRefGoogle Scholar
  159. 159.
    Ludtmann MH, Arber C, Bartolome F et al (2017) Mutations in valosin-containing protein (VCP) decrease ADP/ATP translocation across the mitochondrial membrane and impair energy metabolism in human neurons. J Biol Chem.  https://doi.org/10.1074/jbc.M116.762898
  160. 160.
    Meyer HH, Wang Y, Warren G (2002) Direct binding of ubiquitin conjugates by the mammalian p97 adaptor complexes, p47 and Ufd1-Npl4. EMBO J 21:5645–5652PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Buchberger A, Schindelin H, Hänzelmann P (2015) Control of p97 function by cofactor binding. FEBS Lett 589:2578–2589.  https://doi.org/10.1016/j.febslet.2015.08.028PubMedCrossRefGoogle Scholar
  162. 162.
    Wang T, Xu W, Qin M et al (2016) Pathogenic mutations in the valosin-containing protein/p97(VCP) N-domain inhibit the SUMOylation of VCP and lead to impaired stress response. J Biol Chem.  https://doi.org/10.1074/jbc.M116.729343
  163. 163.
    Li X, Thompson D, Kumar B, DeMartino GN (2014) Molecular and cellular roles of PI31 (PSMF1) protein in regulation of proteasome function. J Biol Chem 289:17392–17405.  https://doi.org/10.1074/jbc.M114.561183PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Ju J-S, Fuentealba RA, Miller SE et al (2009) Valosin-containing protein (VCP) is required for autophagy and is disrupted in VCP disease. J Cell Biol 187:875–888.  https://doi.org/10.1083/jcb.200908115PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Tresse E, Salomons FA, Vesa J et al (2010) VCP/p97 is essential for maturation of ubiquitin-containing autophagosomes and this function is impaired by mutations that cause IBMPFD. Autophagy 6:217–227PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Papadopoulos C, Kirchner P, Bug M et al (2017) VCP/p97 cooperates with YOD1, UBXD1 and PLAA to drive clearance of ruptured lysosomes by autophagy. EMBO J 36:135–150.  https://doi.org/10.15252/embj.201695148PubMedCrossRefGoogle Scholar
  167. 167.
    Ko HS, Uehara T, Tsuruma K, Nomura Y (2004) Ubiquilin interacts with ubiquitylated proteins and proteasome through its ubiquitin-associated and ubiquitin-like domains. FEBS Lett 566:110–114.  https://doi.org/10.1016/j.febslet.2004.04.031PubMedCrossRefGoogle Scholar
  168. 168.
    Hjerpe R, Bett JS, Keuss MJ et al (2016) UBQLN2 mediates autophagy-independent protein aggregate clearance by the proteasome. Cell 166:935–949.  https://doi.org/10.1016/j.cell.2016.07.001PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Xia Y, Yan LH, Huang B et al (2014) Pathogenic mutation of UBQLN2 impairs its interaction with UBXD8 and disrupts endoplasmic reticulum-associated protein degradation. J Neurochem 129:99–106.  https://doi.org/10.1111/jnc.12606PubMedCrossRefGoogle Scholar
  170. 170.
    N’Diaye E-N, Kajihara KK, Hsieh I et al (2009) PLIC proteins or ubiquilins regulate autophagy-dependent cell survival during nutrient starvation. EMBO Rep 10:173–179.  https://doi.org/10.1038/embor.2008.238PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Rothenberg C, Srinivasan D, Mah L et al (2010) Ubiquilin functions in autophagy and is degraded by chaperone-mediated autophagy. Hum Mol Genet 19:3219–3232.  https://doi.org/10.1093/hmg/ddq231PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Chang L, Monteiro MJ (2015) Defective proteasome delivery of polyubiquitinated proteins by ubiquilin-2 proteins containing ALS mutations. PLoS One 10:e0130162.  https://doi.org/10.1371/journal.pone.0130162PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Huang B, Wu Q, Zhou H et al (2016) Increased Ubqln2 expression causes neuron death in transgenic rats. J Neurochem 139:285–293.  https://doi.org/10.1111/jnc.13748PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Le NTT, Chang L, Kovlyagina I et al (2016) Motor neuron disease, TDP-43 pathology, and memory deficits in mice expressing ALS-FTD-linked UBQLN2 mutations. Proc Natl Acad Sci U S A 113:E7580–E7589.  https://doi.org/10.1073/pnas.1608432113PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Teyssou E, Chartier L, Amador M-D-M et al (2017) Novel UBQLN2 mutations linked to amyotrophic lateral sclerosis and atypical hereditary spastic paraplegia phenotype through defective HSP70-mediated proteolysis. Neurobiol Aging.  https://doi.org/10.1016/j.neurobiolaging.2017.06.018
  176. 176.
    Kanekura K, Nishimoto I, Aiso S, Matsuoka M (2006) Characterization of amyotrophic lateral sclerosis-linked P56S mutation of vesicle-associated membrane protein-associated protein B (VAPB/ALS8). J Biol Chem 281:30223–30233.  https://doi.org/10.1074/jbc.M605049200PubMedCrossRefGoogle Scholar
  177. 177.
    Teuling E, Ahmed S, Haasdijk E et al (2007) Motor neuron disease-associated mutant vesicle-associated membrane protein-associated protein (VAP) B recruits wild-type VAPs into endoplasmic reticulum-derived tubular aggregates. J Neurosci 27:9801–9815.  https://doi.org/10.1523/JNEUROSCI.2661-07.2007PubMedCrossRefGoogle Scholar
  178. 178.
    Aliaga L, Lai C, Yu J et al (2013) Amyotrophic lateral sclerosis-related VAPB P56S mutation differentially affects the function and survival of corticospinal and spinal motor neurons. Hum Mol Genet 22:4293–4305.  https://doi.org/10.1093/hmg/ddt279PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Langou K, Moumen A, Pellegrino C et al (2010) AAV-mediated expression of wild-type and ALS-linked mutant VAPB selectively triggers death of motoneurons through a Ca2+-dependent ER-associated pathway. J Neurochem 114:795–809.  https://doi.org/10.1111/j.1471-4159.2010.06806.xPubMedCrossRefGoogle Scholar
  180. 180.
    Chen H-J, Anagnostou G, Chai A et al (2010) Characterization of the properties of a novel mutation in VAPB in familial amyotrophic lateral sclerosis. J Biol Chem 285:40266–40281.  https://doi.org/10.1074/jbc.M110.161398PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Genevini P, Papiani G, Ruggiano A et al (2014) Amyotrophic lateral sclerosis-linked mutant VAPB inclusions do not interfere with protein degradation pathways or intracellular transport in a cultured cell model. PLoS One 9:e113416.  https://doi.org/10.1371/journal.pone.0113416PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Navone F, Genevini P, Borgese N (2015) Autophagy and neurodegeneration: insights from a cultured cell model of ALS. Cell 4:354–386.  https://doi.org/10.3390/cells4030354CrossRefGoogle Scholar
  183. 183.
    Le Ber I, De Septenville A, Millecamps S et al (2015) TBK1 mutation frequencies in French frontotemporal dementia and amyotrophic lateral sclerosis cohorts. Neurobiol Aging 36:3116.e5–3116.e8.  https://doi.org/10.1016/j.neurobiolaging.2015.08.009CrossRefGoogle Scholar
  184. 184.
    Cirulli ET, Lasseigne BN, Petrovski S et al (2015) Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science 347:1436–1441.  https://doi.org/10.1126/science.aaa3650PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Corcia P, Beltran S, Vourc’h P et al (2015) TBK1 gene stresses the major role of autophagy in ALS. Rev Neurol (Paris) 171:747–749.  https://doi.org/10.1016/j.neurol.2015.10.004CrossRefGoogle Scholar
  186. 186.
    Ahmad L, Zhang S-Y, Casanova J-L, Sancho-Shimizu V (2016) Human TBK1: a gatekeeper of Neuroinflammation. Trends Mol Med 22:511–527.  https://doi.org/10.1016/j.molmed.2016.04.006PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Weidberg H, Elazar Z (2011) TBK1 mediates crosstalk between the innate immune response and autophagy. Sci Signal 4:pe39.  https://doi.org/10.1126/scisignal.2002355PubMedCrossRefGoogle Scholar
  188. 188.
    Matsumoto G, Shimogori T, Hattori N, Nukina N (2015) TBK1 controls autophagosomal engulfment of polyubiquitinated mitochondria through p62/SQSTM1 phosphorylation. Hum Mol Genet 24:4429–4442.  https://doi.org/10.1093/hmg/ddv179PubMedCrossRefGoogle Scholar
  189. 189.
    Stork B, Alers S, S. A, Wesselborg S (2012) Regulation of autophagy by protein phosphorylation. Protein Phosphorylation Hum HealthGoogle Scholar
  190. 190.
    Gijselinck I, Van Mossevelde S, van der Zee J et al (2015) Loss of TBK1 is a frequent cause of frontotemporal dementia in a Belgian cohort. Neurology 85:2116–2125.  https://doi.org/10.1212/WNL.0000000000002220PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Richter B, Sliter DA, Herhaus L et al (2016) Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc Natl Acad Sci U S A 113:4039–4044.  https://doi.org/10.1073/pnas.1523926113PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Moore AS, Holzbaur ELF (2016) Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy. Proc Natl Acad Sci U S A 113:E3349–E3358.  https://doi.org/10.1073/pnas.1523810113PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Chau T-L, Gioia R, Gatot J-S et al (2008) Are the IKKs and IKK-related kinases TBK1 and IKK-epsilon similarly activated? Trends Biochem Sci 33:171–180.  https://doi.org/10.1016/j.tibs.2008.01.002PubMedCrossRefGoogle Scholar
  194. 194.
    Chow CY, Landers JE, Bergren SK et al (2009) Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS. Am J Hum Genet 84:85–88.  https://doi.org/10.1016/j.ajhg.2008.12.010PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Verdiani S, Origone P, Geroldi A et al (2013) The FIG4 gene does not play a major role in causing ALS in Italian patients. Amyotroph Lateral Scler Front Degener 14:228–229.  https://doi.org/10.3109/21678421.2012.760605CrossRefGoogle Scholar
  196. 196.
    Osmanovic A, Rangnau I, Kosfeld A et al (2017) FIG4 variants in central European patients with amyotrophic lateral sclerosis: a whole-exome and targeted sequencing study. Eur J Hum Genet EJHG 25:324–331.  https://doi.org/10.1038/ejhg.2016.186PubMedCrossRefGoogle Scholar
  197. 197.
    Alonso G, Phan V, Guillemain I et al (2000) Immunocytochemical localization of the sigma(1) receptor in the adult rat central nervous system. Neuroscience 97:155–170PubMedCrossRefGoogle Scholar
  198. 198.
    Schröder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789.  https://doi.org/10.1146/annurev.biochem.73.011303.074134PubMedCrossRefGoogle Scholar
  199. 199.
    Alemu EA, Lamark T, Torgersen KM et al (2012) ATG8 family proteins act as scaffolds for assembly of the ULK complex: sequence requirements for LC3-interacting region (LIR) motifs. J Biol Chem 287:39275–39290.  https://doi.org/10.1074/jbc.M112.378109PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Paschen W, Mengesdorf T (2005) Endoplasmic reticulum stress response and neurodegeneration. Cell Calcium 38:409–415.  https://doi.org/10.1016/j.ceca.2005.06.019PubMedCrossRefGoogle Scholar
  201. 201.
    Al-Saif A, Al-Mohanna F, Bohlega S (2011) A mutation in sigma-1 receptor causes juvenile amyotrophic lateral sclerosis. Ann Neurol 70:913–919.  https://doi.org/10.1002/ana.22534PubMedCrossRefGoogle Scholar
  202. 202.
    Prause J, Goswami A, Katona I et al (2013) Altered localization, abnormal modification and loss of function of sigma receptor-1 in amyotrophic lateral sclerosis. Hum Mol Genet 22:1581–1600.  https://doi.org/10.1093/hmg/ddt008PubMedCrossRefGoogle Scholar
  203. 203.
    Dreser A, Vollrath JT, Sechi A et al (2017) The ALS-linked E102Q mutation in sigma receptor-1 leads to ER stress-mediated defects in protein homeostasis and dysregulation of RNA-binding proteins. Cell Death Differ.  https://doi.org/10.1038/cdd.2017.88
  204. 204.
    Williams KL, Topp S, Yang S et al (2016) CCNF mutations in amyotrophic lateral sclerosis and frontotemporal dementia. Nat Commun.  https://doi.org/10.1038/ncomms11253
  205. 205.
    Bai C, Richman R, Elledge SJ (1994) Human cyclin F. EMBO J 13:6087–6098PubMedPubMedCentralGoogle Scholar
  206. 206.
    D’Angiolella V, Esencay M, Pagano M (2013) A cyclin without cyclin-dependent kinases: cyclin F controls genome stability through ubiquitin-mediated proteolysis. Trends Cell Biol 23:135–140.  https://doi.org/10.1016/j.tcb.2012.10.011PubMedCrossRefGoogle Scholar
  207. 207.
    Galligan JJ, Petersen DR (2012) The human protein disulfide isomerase gene family. Hum Genomics 6:6.  https://doi.org/10.1186/1479-7364-6-6PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Gonzalez-Perez P, Woehlbier U, Chian R-J et al (2015) Identification of rare protein disulfide isomerase gene variants in amyotrophic lateral sclerosis patients. Gene 566:158–165.  https://doi.org/10.1016/j.gene.2015.04.035PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Woehlbier U, Colombo A, Saaranen MJ et al (2016) ALS-linked protein disulfide isomerase variants cause motor dysfunction. EMBO J 35:845–865.  https://doi.org/10.15252/embj.201592224PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Ciechanover A, Kwon YT (2015) Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp Mol Med 47:e147.  https://doi.org/10.1038/emm.2014.117PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Crippa V, Sau D, Rusmini P et al (2010) The small heat shock protein B8 (HspB8) promotes autophagic removal of misfolded proteins involved in amyotrophic lateral sclerosis (ALS). Hum Mol Genet 19:3440–3456.  https://doi.org/10.1093/hmg/ddq257PubMedCrossRefGoogle Scholar
  212. 212.
    Wang I-F, Guo B-S, Liu Y-C et al (2012) Autophagy activators rescue and alleviate pathogenesis of a mouse model with proteinopathies of the TAR DNA-binding protein 43. Proc Natl Acad Sci U S A 109:15024–15029.  https://doi.org/10.1073/pnas.1206362109PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Wang X, Ma M, Teng J et al (2015) Valproate attenuates 25-kDa C-terminal fragment of TDP-43-induced neuronal toxicity via suppressing endoplasmic reticulum stress and activating autophagy. Int J Biol Sci 11:752–761.  https://doi.org/10.7150/ijbs.11880PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Feng H-L, Leng Y, Ma C-H et al (2008) Combined lithium and valproate treatment delays disease onset, reduces neurological deficits and prolongs survival in an amyotrophic lateral sclerosis mouse model. Neuroscience 155:567–572.  https://doi.org/10.1016/j.neuroscience.2008.06.040PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Bose S, Cho J (2017) Targeting chaperones, heat shock factor-1, and unfolded protein response: promising therapeutic approaches for neurodegenerative disorders. Ageing Res Rev 35:155–175.  https://doi.org/10.1016/j.arr.2016.09.004PubMedCrossRefGoogle Scholar
  216. 216.
    Kieran D, Kalmar B, Dick JRT et al (2004) Treatment with arimoclomol, a coinducer of heat shock proteins, delays disease progression in ALS mice. Nat Med 10:402–405.  https://doi.org/10.1038/nm1021PubMedCrossRefGoogle Scholar
  217. 217.
    Kalmar B, Lu C-H, Greensmith L (2014) The role of heat shock proteins in amyotrophic lateral sclerosis: the therapeutic potential of arimoclomol. Pharmacol Ther 141:40–54.  https://doi.org/10.1016/j.pharmthera.2013.08.003PubMedCrossRefGoogle Scholar
  218. 218.
    Yu YJ, Watts RJ (2013) Developing therapeutic antibodies for neurodegenerative disease. Neurother J Am Soc Exp Neurother 10:459–472.  https://doi.org/10.1007/s13311-013-0187-4CrossRefGoogle Scholar
  219. 219.
    Valera E, Masliah E (2013) Immunotherapy for neurodegenerative diseases: focus on α-synucleinopathies. Pharmacol Ther 138:311–322.  https://doi.org/10.1016/j.pharmthera.2013.01.013PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Gros-Louis F, Soucy G, Larivière R, Julien J-P (2010) Intracerebroventricular infusion of monoclonal antibody or its derived Fab fragment against misfolded forms of SOD1 mutant delays mortality in a mouse model of ALS. J Neurochem 113:1188–1199.  https://doi.org/10.1111/j.1471-4159.2010.06683.xPubMedGoogle Scholar
  221. 221.
    Benatar M (2007) Lost in translation: treatment trials in the SOD1 mouse and in human ALS. Neurobiol Dis 26:1–13.  https://doi.org/10.1016/j.nbd.2006.12.015PubMedCrossRefGoogle Scholar
  222. 222.
    Renton AE, Chiò A, Traynor BJ (2014) State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 17:17–23.  https://doi.org/10.1038/nn.3584PubMedCrossRefGoogle Scholar
  223. 223.
    Veyrat-Durebex C, Corcia P, Dangoumau A et al (2014) Advances in cellular models to explore the pathophysiology of amyotrophic lateral sclerosis. Mol Neurobiol 49:966–983.  https://doi.org/10.1007/s12035-013-8573-9PubMedCrossRefGoogle Scholar
  224. 224.
    Holmes WM, Klaips CL, Serio TR (2014) Defining the limits: protein aggregation and toxicity in vivo. Crit Rev Biochem Mol Biol 49:294–303.  https://doi.org/10.3109/10409238.2014.914151PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.UMR INSERM U1253Université de ToursToursFrance
  2. 2.Service de NeurologieCHRU de ToursToursFrance
  3. 3.Service de Biochimie et de Biologie MoléculaireCHRU de ToursToursFrance

Personalised recommendations