Skip to main content

Advertisement

Log in

Deleterious Effects of VEGFR2 and RET Inhibition in a Preclinical Model of Parkinson’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

A Correction to this article was published on 05 March 2018

This article has been updated

Abstract

Neurotrophic factors (NTFs) are a promising therapeutic option for Parkinson’s disease (PD). They exert their function through tyrosine kinase receptors. Our goal was to assess the effects of administering a selective tyrosine kinase inhibitor (vandetanib) that blocks VEGFR2 and RET receptors in a preclinical model of PD. Rats underwent intrastriatal injections of 6-hydroxydopamine (6-OHDA). Two weeks later, the rats received 30 mg/kg vandetanib or saline orally. The effects were assessed using the rotational behavioral test, tyrosine hydroxylase (TH) immunohistochemistry, and western blot. In 6-OHDA-lesioned rats, motor symptoms were almost undetectable, but morphological and biochemical changes were significant. Vandetanib treatment, combined with the presence of 6-OHDA lesions, significantly increased behavioral impairment and morphological and biochemical changes. Therefore, after vandetanib treatment, the TH-immunopositive striatal volume, the percentage of TH+ neurons, and the extent of the axodendritic network in the substantia nigra decreased. Glial fibrillary acidic protein-positivity significantly decreased in the striatum and substantia nigra in the vandetanib-treated group. In addition, p-Akt and p-ERK 1/2 levels were significantly lower and caspase-3 expression significantly increased after vandetanib administration. In conclusion, we demonstrate for the first time the deleterious effect of a tyrosine kinase inhibitor on the dopaminergic system, supporting the beneficial and synergistic effect of NTFs reported in previous papers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 05 March 2018

    The authors found a terrible mistake in the manuscript. The legends from the Fig. 5 and 6 are interchanged. The Fig. 5 should be appeared with the legend from the Fig. 6 and Fig. 6 should be appeared with the legend from the Fig. 5.

References

  1. Hirsch EC, Jenner P, Przedborski S (2013) Pathogenesis of Parkinson’s disease. Mov Disord 28:24–30. doi:10.1002/mds.25032

    Article  CAS  PubMed  Google Scholar 

  2. Ramaswamy S, Kordower JH (2009) Are growth factors the answer? Parkinsonism Relat Disord 15(Suppl 3):S176–S180. doi:10.1016/S1353-8020(09)70809-0

    Article  PubMed  Google Scholar 

  3. Yasuda T, Mochizuki H (2010) Use of growth factors for the treatment of Parkinson’s disease. Expert Rev Neurother 10:915–924. doi:10.1586/ern.10.55

    Article  CAS  PubMed  Google Scholar 

  4. Airaksinen MS, Saarma M (2002) The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 3:383–394. doi:10.1038/nrn812

    Article  CAS  PubMed  Google Scholar 

  5. Kramer ER, Aron L, Ramakers GMJ et al (2007) Absence of Ret signaling in mice causes progressive and late degeneration of the nigrostriatal system. PLoS Biol 5:e39. doi:10.1371/journal.pbio.0050039

    Article  PubMed  PubMed Central  Google Scholar 

  6. Drinkut A, Tillack K, Meka DP et al (2016) Ret is essential to mediate GDNF’s neuroprotective and neuroregenerative effect in a Parkinson disease mouse model. Cell Death Dis 7:e2359. doi:10.1038/cddis.2016.263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ferrara N (2009) Vascular endothelial growth factor. Arterioscler Thromb Vasc Biol 29:789–791. doi:10.1161/ATVBAHA.108.179663

    Article  CAS  PubMed  Google Scholar 

  8. Shibuya M (2011) Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes Cancer 2:1097–1105. doi:10.1177/1947601911423031

    Article  PubMed  PubMed Central  Google Scholar 

  9. Musumeci F, Radi M, Brullo C, Schenone S (2012) Vascular endothelial growth factor (VEGF) receptors: drugs and new inhibitors. J Med Chem 55:10797–10822. doi:10.1021/jm301085w

    Article  CAS  PubMed  Google Scholar 

  10. Storkebaum E, Lambrechts D, Carmeliet P (2004) VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection. BioEssays 26:943–954. doi:10.1002/bies.20092

    Article  CAS  PubMed  Google Scholar 

  11. Lafuente JV, Argandoña EG, Mitre B (2006) VEGFR-2 expression in brain injury: Its distribution related to brain-blood barrier markers. J Neural Transm 113:487–496. doi:10.1007/s00702-005-0407-0

    Article  CAS  PubMed  Google Scholar 

  12. Wick A, Wick W, Waltenberger J et al (2002) Neuroprotection by hypoxic preconditioning requires sequential activation of vascular endothelial growth factor receptor and Akt. J Neurosci 22:6401–6407

    CAS  PubMed  Google Scholar 

  13. Kaya D, Gürsoy-Ozdemir Y, Yemisci M et al (2005) VEGF protects brain against focal ischemia without increasing blood-brain permeability when administered intracerebroventricularly. J Cereb Blood Flow Metab 25:1111–1118. doi:10.1038/sj.jcbfm.9600109

    Article  CAS  PubMed  Google Scholar 

  14. Yasuhara T, Shingo T, Kobayashi K et al (2004) Neuroprotective effects of vascular endothelial growth factor (VEGF) upon dopaminergic neurons in a rat model of Parkinson’s disease. Eur J Neurosci 19:1494–1504. doi:10.1111/j.1460-9568.2004.03254.x

    Article  PubMed  Google Scholar 

  15. Yasuhara T, Shingo T, Muraoka K et al (2005) Neurorescue effects of VEGF on a rat model of Parkinson’s disease. Brain Res 1053:10–18. doi:10.1016/j.brainres.2005.05.027

    Article  CAS  PubMed  Google Scholar 

  16. Herrán E, Ruiz-Ortega JÁ, Aristieta A et al (2013) In vivo administration of VEGF- and GDNF-releasing biodegradable polymeric microspheres in a severe lesion model of Parkinson’s disease. Eur J Pharm Biopharm 85:1183–1190. doi:10.1016/j.ejpb.2013.03.034

    Article  PubMed  Google Scholar 

  17. Requejo C, Ruiz-Ortega JA, Bengoetxea H et al (2015) Topographical distribution of morphological changes in a partial model of Parkinson’s disease-effects of nanoencapsulated neurotrophic factors administration. Mol Neurobiol. doi:10.1007/s12035-015-9234-y

  18. Herrán E, Requejo C, Ruiz-Ortega JA et al (2014) Increased antiparkinson efficacy of the combined administration of VEGF- and GDNF-loaded nanospheres in a partial lesion model of Parkinson’s disease. Int J Nanomedicine 9:2677–2687. doi:10.2147/IJN.S61940

    PubMed  PubMed Central  Google Scholar 

  19. Requejo C, Ruiz-Ortega JA, Bengoetxea H et al (2016) Morphological changes in a severe model of Parkinson’s disease and its suitability to test the therapeutic effects of microencapsulated neurotrophic factors. Mol Neurobiol 1–14. doi: 10.1007/s12035-016-0244-1

  20. Knight ZA, Lin H, Shokat KM (2010) Targeting the cancer kinome through polypharmacology. Nat Rev Cancer 10:130–137. doi:10.1038/nrc2787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lorusso PM, Eder JP (2008) Therapeutic potential of novel selective-spectrum kinase inhibitors in oncology. Expert Opin Investig Drugs 17:1013–1028. doi:10.1517/13543784.17.7.1013

    Article  CAS  PubMed  Google Scholar 

  22. Huo Z, Yu S, Hong S et al (2016) A systematic review and meta-analysis of the risk of diarrhea associated with vandetanib treatment in carcinoma patients. Onco Targets Ther 9:3621–3631. doi:10.2147/OTT.S96830

    PubMed  PubMed Central  Google Scholar 

  23. Paxinos G, Watson C (2013) The rat brain in stereotaxic coordinates Hard Cover Edition. Academic Press

  24. Argandoña EG, Bengoetxea H, Bulnes S et al (2012) Effect of intracortical vascular endothelial growth factor infusion and blockade during the critical period in the rat visual cortex. Brain Res 1473:141–154. doi:10.1016/j.brainres.2012.07.008

    Article  PubMed  Google Scholar 

  25. Yue X, Hariri DJ, Caballero B et al (2014) Comparative study of the neurotrophic effects elicited by VEGF-B and GDNF in preclinical in vivo models of Parkinson’s disease. Neuroscience 258:385–400. doi:10.1016/j.neuroscience.2013.11.038

    Article  CAS  PubMed  Google Scholar 

  26. Kirik D, Rosenblad C, Björklund A (2000) Preservation of a functional nigrostriatal dopamine pathway by GDNF in the intrastriatal 6-OHDA lesion model depends on the site of administration of the trophic factor. Eur J Neurosci 12:3871–3882

    Article  CAS  PubMed  Google Scholar 

  27. Nakajima K, Hida H, Shimano Y et al (2001) GDNF is a major component of trophic activity in DA-depleted striatum for survival and neurite extension of DAergic neurons. Brain Res 916:76–84. doi:10.1016/S0006-8993(01)02866-9

    Article  CAS  PubMed  Google Scholar 

  28. Kramer ER, Liss B (2015) GDNF-Ret signaling in midbrain dopaminergic neurons and its implication for Parkinson disease. FEBS Lett 589:3760–3772. doi:10.1016/j.febslet.2015.11.006

    Article  CAS  PubMed  Google Scholar 

  29. Stott SRW, Barker RA (2014) Time course of dopamine neuron loss and glial response in the 6-OHDA striatal mouse model of Parkinson’s disease. Eur J Neurosci 39:1042–1056. doi:10.1111/ejn.12459

    Article  PubMed  Google Scholar 

  30. Hernandez-Baltazar D, Mendoza-Garrido ME, Martinez-Fong D (2013) Activation of GSK-3β and caspase-3 occurs in nigral dopamine neurons during the development of apoptosis activated by a striatal injection of 6-hydroxydopamine. PLoS One 8:1–13. doi:10.1371/journal.pone.0070951

    Article  Google Scholar 

  31. Kunnimalaiyaan M, Ndiaye M, Chen H (2006) Apoptosis-mediated medullary thyroid cancer growth suppression by the PI3K inhibitor LY294002. Surgery 140:1009-14–1009-15. doi:10.1016/j.surg.2006.06.040

    Article  Google Scholar 

  32. Spanheimer PM, Cyr AR, Gillum MP et al (2014) Distinct pathways regulated by RET and estrogen receptor in luminal breast cancer demonstrate the biological basis for combination therapy. Ann Surg 259:793–799. doi:10.1097/SLA.0b013e3182a6f552

    Article  PubMed  PubMed Central  Google Scholar 

  33. Nicole O, Ali C, Docagne F et al (2001) Neuroprotection mediated by glial cell line-derived neurotrophic factor: involvement of a reduction of NMDA-induced calcium influx by the mitogen-activated protein kinase pathway. J Neurosci 21

  34. Karakaya S, Kipp M, Beyer C (2007) Oestrogen regulates the expression and function of dopamine transporters in astrocytes of the nigrostriatal system. J Neuroendocrinol 19:682–690. doi:10.1111/j.1365-2826.2007.01575.x

    Article  CAS  PubMed  Google Scholar 

  35. Timmons S, Coakley MF, Moloney AM, O’Neill C (2009) Akt signal transduction dysfunction in Parkinson’s disease. Neurosci Lett 467:30–35. doi:10.1016/j.neulet.2009.09.055

    Article  CAS  PubMed  Google Scholar 

  36. Cui W, Li W, Han R et al (2011) PI3-K/Akt and ERK pathways activated by VEGF play opposite roles in MPP+-induced neuronal apoptosis. Neurochem Int 59:945–953. doi:10.1016/j.neuint.2011.07.005

    Article  CAS  PubMed  Google Scholar 

  37. Francardo V, Bez F, Wieloch T et al Pharmacological stimulation of sigma-1 receptors has neurorestorative effects in experimental parkinsonism. doi: 10.1093/brain/awu107

  38. Azkona G, Sagarduy A, Aristieta A et al (2014) Buspirone anti-dyskinetic effect is correlated with temporal normalization of dysregulated striatal DRD1 signalling in L-DOPA-treated rats. Neuropharmacology 79:726–737. doi:10.1016/j.neuropharm.2013.11.024

    Article  CAS  PubMed  Google Scholar 

  39. Fuqua JL, Littrell OM, Lundblad M et al (2014) Dynamic changes in dopamine neuron function after DNSP-11 treatment: effects in vivo and increased ERK 1/2 phosphorylation in vitro. Peptides 54:1–8. doi:10.1016/j.peptides.2013.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lindgren N, Francardo V, Quintino L et al (2012) A model of GDNF gene therapy in mice with 6-hydroxydopamine lesions: time course of neurorestorative effects and ERK1/2 activation. J Parkinsons Dis 2:333–348. doi:10.3233/JPD-012146

    CAS  PubMed  Google Scholar 

  41. Paulus W, Jellinger K (1991) The neuropathologic basis of different clinical subgroups of Parkinson’s disease. J Neuropathol Exp Neurol 50:743–755

    Article  CAS  PubMed  Google Scholar 

  42. Morales I, Sanchez A, Rodriguez-Sabate C, Rodriguez M (2016) The astrocytic response to the dopaminergic denervation of the striatum. J Neurochem:81–95. doi:10.1111/jnc.13684

  43. Rossi D (2015) Astrocyte physiopathology: at the crossroads of intercellular networking, inflammation and cell death. Prog Neurobiol 130:86–120. doi:10.1016/j.pneurobio.2015.04.003

    Article  CAS  PubMed  Google Scholar 

  44. Halliday GM, Stevens CH (2011) Glia: initiators and progressors of pathology in Parkinson’s disease. Mov Disord 26:6–17. doi:10.1002/mds.23455

    Article  PubMed  Google Scholar 

  45. Pellegrini E, Diotel N, Vaillant-Capitaine C et al (2016) Steroid modulation of neurogenesis: focus on radial glial cells in zebrafish. J Steroid Biochem Mol Biol 160:27–36. doi:10.1016/j.jsbmb.2015.06.011

    Article  PubMed  Google Scholar 

  46. Episcopo FL, Tirolo C, Testa N et al (2013) Reactive astrocytes are key players in nigrostriatal dopaminergic neurorepair in the MPTP mouse model of Parkinson’s disease: focus on endogenous neurorestoration. Curr Aging Sci 6:45–55

    Article  CAS  Google Scholar 

  47. Ben Haim L, Carrillo-de Sauvage M-A, Ceyzériat K, Escartin C (2015) Elusive roles for reactive astrocytes in neurodegenerative diseases. Front Cell Neurosci 9:278. doi:10.3389/fncel.2015.00278

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chen P-S, Peng G-S, Li G et al (2006) Valproate protects dopaminergic neurons in midbrain neuron/glia cultures by stimulating the release of neurotrophic factors from astrocytes. Mol Psychiatry 11:1116–1125. doi:10.1038/sj.mp.4001893

    Article  CAS  PubMed  Google Scholar 

  49. Tian Y, Tang C-J, Wang J et al (2007) Favorable effects of VEGF gene transfer on a rat model of Parkinson disease using adeno-associated viral vectors. Neurosci Lett 421:239–244. doi:10.1016/j.neulet.2007.05.033

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors appreciate the support from the University of the Basque Country (UPV/EHU) (UFI 11/32), the Basque Government (GIC IT 901/16 and 747-13, PPG 17/51), “Ministerio de Ciencia e Innovación” SAF 2016-77758-R (AEI/FEDER, UE), and SGIker (UPV/EHU). C. Requejo appreciates the UPV/EHU for a fellowship subvention.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Requejo.

Additional information

A correction to this article is available online at https://doi.org/10.1007/s12035-018-0979-y.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Requejo, C., Ruiz-Ortega, J.A., Bengoetxea, H. et al. Deleterious Effects of VEGFR2 and RET Inhibition in a Preclinical Model of Parkinson’s Disease. Mol Neurobiol 55, 201–212 (2018). https://doi.org/10.1007/s12035-017-0733-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0733-x

Keywords

Navigation