Skip to main content

Advertisement

Log in

MicroRNA-Directed Neuronal Reprogramming as a Therapeutic Strategy for Neurological Diseases

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The loss of neurons due to injury and disease results in a wide spectrum of highly disabling neurological and neurodegenerative conditions, given the apparent limited capacity of endogenous repair of the adult central nervous system (CNS). Therefore, it is important to develop technologies that can promote de novo neural stem cell and neuron generation. Current insights in CNS development and cellular reprogramming have provided the knowledge to finely modulate lineage-restricted transcription factors and microRNAs (miRNA) to elicit correct neurogenesis. Here, we discuss the current knowledge on the direct reprogramming of somatic non-neuronal cells into neural stem cells or subtype specific neurons in vitro and in vivo focusing on miRNA driven reprogramming. miRNA can allow rapid and efficient direct phenotype conversion by modulating gene networks active during development, which promote global shifts in the epigenetic landscape pivoting cell fate decisions. Furthermore, we critically present state-of-the-art and recent advances on miRNA therapeutics that can be applied to the diseased CNS. Together, the advances in our understanding of miRNA role in CNS development and disease, recent progress in miRNA-based therapeutic strategies, and innovative drug delivery methods create novel perspectives for meaningful therapies for neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dametti S, Faravelli I, Ruggieri M et al (2015) Experimental advances towards neural regeneration from induced stem cells to direct in vivo reprogramming. Mol Neurobiol. doi:10.1007/s12035-015-9181-7

  2. Sandoe J, Eggan K (2013) Opportunities and challenges of pluripotent stem cell neurodegenerative disease models. Nat Neurosci 16:780–789. doi:10.1038/nn.3425

    Article  CAS  PubMed  Google Scholar 

  3. Buffo A, Vosko MR, Ertürk D et al (2005) Expression pattern of the transcription factor Olig2 in response to brain injuries: implications for neuronal repair. Proc Natl Acad Sci U S A 102:18183–18188. doi:10.1073/pnas.0506535102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jones KS, Connor B (2016) Adult neurogenesis and in vivo reprogramming: combining strategies for endogenous brain repair. Neural Regen Res 11:1748–1749. doi:10.4103/1673–5374.194712

    Article  PubMed  PubMed Central  Google Scholar 

  5. Li H, Chen G (2016) In vivo reprogramming for CNS repair: regenerating neurons from endogenous glial cells. Neuron 91:728–738. doi:10.1016/j.neuron.2016.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Merkle FT, Tramontin AD, García-Verdugo JM, Alvarez-Buylla A (2004) Radial glia give rise to adult neural stem cells in the subventricular zone. Proc Natl Acad Sci U S A 101:17528–17532. doi:10.1073/pnas.0407893101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mu L, Berti L, Masserdotti G et al (2012) SoxC transcription factors are required for neuronal differentiation in adult hippocampal neurogenesis. J Neurosci 32:3067–3080. doi:10.1523/JNEUROSCI.4679-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Faravelli I, Riboldi G, Nizzardo M et al (2014) Stem cell transplantation for amyotrophic lateral sclerosis: therapeutic potential and perspectives on clinical translation. Cell Mol Life Sci CMLS 71:3257–3268. doi:10.1007/s00018-014-1613-4

    Article  CAS  PubMed  Google Scholar 

  9. Arlotta P, Berninger B (2014) Brains in metamorphosis: reprogramming cell identity within the central nervous system. Curr Opin Neurobiol 27:208–214. doi:10.1016/j.conb.2014.04.007

    Article  CAS  PubMed  Google Scholar 

  10. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676. doi:10.1016/j.cell.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  11. Peng J, Zeng X (2011) The role of induced pluripotent stem cells in regenerative medicine: neurodegenerative diseases. Stem Cell Res Ther 2:32. doi:10.1186/scrt73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ruggieri M, Riboldi G, Brajkovic S et al (2014) Induced neural stem cells: methods of reprogramming and potential therapeutic applications. Prog Neurobiol 114:15–24. doi:10.1016/j.pneurobio.2013.11.001

    Article  CAS  PubMed  Google Scholar 

  13. Vierbuchen T, Ostermeier A, Pang ZP et al (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463:1035–1041. doi:10.1038/nature08797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pang ZP, Yang N, Vierbuchen T et al (2011) Induction of human neuronal cells by defined transcription factors. Nature 476:220–223. doi:10.1038/nature10202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yoo AS, Sun AX, Li L et al (2011) MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476:228–231. doi:10.1038/nature10323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Srivastava D, DeWitt N (2016) In vivo cellular reprogramming: the next generation. Cell 166:1386–1396. doi:10.1016/j.cell.2016.08.055

    Article  CAS  PubMed  Google Scholar 

  17. Ambros V (2001) microRNAs: tiny regulators with great potential. Cell 107:823–826

    Article  CAS  PubMed  Google Scholar 

  18. Lee Y, Kim M, Han J et al (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060. doi:10.1038/sj.emboj.7600385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15:509–524. doi:10.1038/nrm3838

    Article  CAS  PubMed  Google Scholar 

  20. Zong L, Zhu Y, Liang R, Zhao H-B (2016) Gap junction mediated miRNA intercellular transfer and gene regulation: a novel mechanism for intercellular genetic communication. Sci Rep 6:19884. doi:10.1038/srep19884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kuo C-H, Ying S-Y (2012) Advances in microRNA-mediated reprogramming technology. Stem Cells Int 2012:823709. doi:10.1155/2012/823709

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yang H, Zhang L, An J et al (2016) MicroRNA-mediated reprogramming of somatic cells into neural stem cells or neurons. Mol Neurobiol. doi:10.1007/s12035-016-0115-9

  23. Hu S, Wilson KD, Ghosh Z et al (2013) MicroRNA-302 increases reprogramming efficiency via repression of NR2F2. Stem Cells Dayt Ohio 31:259–268. doi:10.1002/stem.1278

    Article  CAS  Google Scholar 

  24. Gruber AJ, Zavolan M (2013) Modulation of epigenetic regulators and cell fate decisions by miRNAs. Epigenomics 5:671–683. doi:10.2217/epi.13.65

    Article  CAS  PubMed  Google Scholar 

  25. Nam Y, Chen C, Gregory RI et al (2011) Molecular basis for interaction of let-7 microRNAs with Lin28. Cell 147:1080–1091. doi:10.1016/j.cell.2011.10.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stevanato L, Sinden JD (2014) The effects of microRNAs on human neural stem cell differentiation in two- and three-dimensional cultures. Stem Cell Res Ther 5:49. doi:10.1186/scrt437

    Article  PubMed  PubMed Central  Google Scholar 

  27. Victor MB, Richner M, Hermanstyne TO et al (2014) Generation of human striatal neurons by microRNA-dependent direct conversion of fibroblasts. Neuron 84:311–323. doi:10.1016/j.neuron.2014.10.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Richner M, Victor MB, Liu Y et al (2015) MicroRNA-based conversion of human fibroblasts into striatal medium spiny neurons. Nat Protoc 10:1543–1555. doi:10.1038/nprot.2015.102

    Article  CAS  PubMed  Google Scholar 

  29. Zhou C, Gu H, Fan R et al (2015) MicroRNA 302/367 cluster effectively facilitates direct reprogramming from human fibroblasts into functional neurons. Stem Cells Dev 24:2746–2755. doi:10.1089/scd.2015.0123

    Article  CAS  PubMed  Google Scholar 

  30. Ghasemi-Kasman M, Hajikaram M, Baharvand H, Javan M (2015) MicroRNA-mediated in vitro and in vivo direct conversion of astrocytes to neuroblasts. PLoS One 10:e0127878. doi:10.1371/journal.pone.0127878

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wohl SG, Reh TA (2016) miR-124-9-9* potentiates Ascl1-induced reprogramming of cultured Müller glia. Glia 64:743–762. doi:10.1002/glia.22958

    Article  PubMed  PubMed Central  Google Scholar 

  32. Weinberg MS, Criswell HE, Powell SK et al (2017) Viral vector reprogramming of adult resident striatal oligodendrocytes into functional neurons. Mol Ther J Am Soc Gene Ther 25:928–934. doi:10.1016/j.ymthe.2017.01.016

    Article  CAS  Google Scholar 

  33. Humphries B, Yang C (2015) The microRNA-200 family: small molecules with novel roles in cancer development, progression and therapy. Oncotarget 6:6472–6498. doi:10.18632/oncotarget.3052

    Article  PubMed  PubMed Central  Google Scholar 

  34. Peng C, Li N, Ng Y-K et al (2012) A unilateral negative feedback loop between miR-200 microRNAs and Sox2/E2F3 controls neural progenitor cell-cycle exit and differentiation. J Neurosci 32:13292–13308. doi:10.1523/JNEUROSCI.2124-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lagos-Quintana M, Rauhut R, Yalcin A et al (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12:735–739

    Article  CAS  PubMed  Google Scholar 

  36. Landgraf P, Rusu M, Sheridan R et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401–1414. doi:10.1016/j.cell.2007.04.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Conaco C, Otto S, Han J-J, Mandel G (2006) Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci U S A 103:2422–2427. doi:10.1073/pnas.0511041103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Deo M, Yu J-Y, Chung K-H et al (2006) Detection of mammalian microRNA expression by in situ hybridization with RNA oligonucleotides. Dev Dyn Off Publ Am Assoc Anat 235:2538–2548. doi:10.1002/dvdy.20847

    CAS  Google Scholar 

  39. Cheng L-C, Pastrana E, Tavazoie M, Doetsch F (2009) miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 12:399–408. doi:10.1038/nn.2294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gu X, Fu C, Lin L et al (2017) miR-124 and miR-9 mediated downregulation of HDAC5 promotes neurite development through activating MEF2C-GPM6A pathway. J Cell Physiol. doi:10.1002/jcp.25927

  41. Xue Q, Yu C, Wang Y et al (2016) miR-9 and miR-124 synergistically affect regulation of dendritic branching via the AKT/GSK3β pathway by targeting Rap2a. Sci Rep 6:26781. doi:10.1038/srep26781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yoo AS, Staahl BT, Chen L, Crabtree GR (2009) MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature 460:642–646. doi:10.1038/nature08139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ambasudhan R, Talantova M, Coleman R et al (2011) Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. Cell Stem Cell 9:113–118. doi:10.1016/j.stem.2011.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20. doi:10.1016/j.cell.2004.12.035

    Article  CAS  PubMed  Google Scholar 

  45. Makeyev EV, Zhang J, Carrasco MA, Maniatis T (2007) The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27:435–448. doi:10.1016/j.molcel.2007.07.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xue Y, Ouyang K, Huang J et al (2013) Direct conversion of fibroblasts to neurons by reprogramming PTB-regulated microRNA circuits. Cell 152:82–96. doi:10.1016/j.cell.2012.11.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lau S, Rylander Ottosson D, Jakobsson J, Parmar M (2014) Direct neural conversion from human fibroblasts using self-regulating and nonintegrating viral vectors. Cell Rep 9:1673–1680. doi:10.1016/j.celrep.2014.11.017

    Article  CAS  PubMed  Google Scholar 

  48. Heinrich C, Bergami M, Gascón S et al (2014) Sox2-mediated conversion of NG2 glia into induced neurons in the injured adult cerebral cortex. Stem Cell Rep 3:1000–1014. doi:10.1016/j.stemcr.2014.10.007

    Article  CAS  Google Scholar 

  49. Yao K, Qiu S, Tian L et al (2016) Wnt regulates proliferation and neurogenic potential of Müller glial cells via a Lin28/let-7 miRNA-dependent pathway in adult mammalian retinas. Cell Rep 17:165–178. doi:10.1016/j.celrep.2016.08.078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Adlakha YK, Seth P (2017) The expanding horizon of MicroRNAs in cellular reprogramming. Prog Neurobiol 148:21–39. doi:10.1016/j.pneurobio.2016.11.003

    Article  CAS  PubMed  Google Scholar 

  51. Takeshita F, Patrawala L, Osaki M et al (2010) Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Mol Ther J Am Soc Gene Ther 18:181–187. doi:10.1038/mt.2009.207

    Article  CAS  Google Scholar 

  52. Fanini F, Fabbri M (2016) MicroRNAs and cancer resistance: A new molecular plot. Clin Pharmacol Ther 99:485–493. doi:10.1002/cpt.353

    Article  CAS  PubMed  Google Scholar 

  53. Liu D, Li Y, Luo G et al (2017) LncRNA SPRY4-IT1 sponges miR-101-3p to promote proliferation and metastasis of bladder cancer cells through up-regulating EZH2. Cancer Lett 388:281–291. doi:10.1016/j.canlet.2016.12.005

    Article  CAS  PubMed  Google Scholar 

  54. Murakami K, Miyagishi M (2014) Tiny masking locked nucleic acids effectively bind to mRNA and inhibit binding of microRNAs in relation to thermodynamic stability. Biomed Rep 2:509–512. doi:10.3892/br.2014.260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Beg MS, Brenner AJ, Sachdev J et al (2017) Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Investig New Drugs 35:180–188. doi:10.1007/s10637-016-0407-y

    Article  CAS  Google Scholar 

  56. Krützfeldt J (2016) Strategies to use microRNAs as therapeutic targets. Best Pract Res Clin Endocrinol Metab 30:551–561. doi:10.1016/j.beem.2016.07.004

    Article  PubMed  Google Scholar 

  57. Liu J, Meng T, Yuan M et al (2016) MicroRNA-200c delivered by solid lipid nanoparticles enhances the effect of paclitaxel on breast cancer stem cell. Int J Nanomedicine 11:6713–6725. doi:10.2147/IJN.S111647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dengl S, Sustmann C, Brinkmann U (2016) Engineered hapten-binding antibody derivatives for modulation of pharmacokinetic properties of small molecules and targeted payload delivery. Immunol Rev 270:165–177. doi:10.1111/imr.12386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Stoica L, Sena-Esteves M (2016) Adeno associated viral vector delivered RNAi for gene therapy of SOD1 amyotrophic lateral sclerosis. Front Mol Neurosci 9:56. doi:10.3389/fnmol.2016.00056

    Article  PubMed  PubMed Central  Google Scholar 

  60. Daya S, Berns KI (2008) Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev 21:583–593. doi:10.1128/CMR.00008-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhou X, Yang P-C (2012) MicroRNA: a small molecule with a big biological impact. MicroRNA Shariqah United Arab Emir 1:1

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Associazione Centro Dino Ferrari for their support.

Author information

Authors and Affiliations

Authors

Contributions

IF and SC conceived the idea, revised all the literature, and contributed to all parts. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Stefania Corti.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Funding

AriSLA provided financial support to SC through a research grant (AriSLAsmallRNALS). AriSLA had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript: and in the decision to publish the results.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faravelli, I., Corti, S. MicroRNA-Directed Neuronal Reprogramming as a Therapeutic Strategy for Neurological Diseases. Mol Neurobiol 55, 4428–4436 (2018). https://doi.org/10.1007/s12035-017-0671-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0671-7

Keywords

Navigation