Molecular Neurobiology

, Volume 55, Issue 5, pp 4428–4436 | Cite as

MicroRNA-Directed Neuronal Reprogramming as a Therapeutic Strategy for Neurological Diseases

  • Irene Faravelli
  • Stefania Corti


The loss of neurons due to injury and disease results in a wide spectrum of highly disabling neurological and neurodegenerative conditions, given the apparent limited capacity of endogenous repair of the adult central nervous system (CNS). Therefore, it is important to develop technologies that can promote de novo neural stem cell and neuron generation. Current insights in CNS development and cellular reprogramming have provided the knowledge to finely modulate lineage-restricted transcription factors and microRNAs (miRNA) to elicit correct neurogenesis. Here, we discuss the current knowledge on the direct reprogramming of somatic non-neuronal cells into neural stem cells or subtype specific neurons in vitro and in vivo focusing on miRNA driven reprogramming. miRNA can allow rapid and efficient direct phenotype conversion by modulating gene networks active during development, which promote global shifts in the epigenetic landscape pivoting cell fate decisions. Furthermore, we critically present state-of-the-art and recent advances on miRNA therapeutics that can be applied to the diseased CNS. Together, the advances in our understanding of miRNA role in CNS development and disease, recent progress in miRNA-based therapeutic strategies, and innovative drug delivery methods create novel perspectives for meaningful therapies for neurodegenerative disorders.


Neuronal repair Therapeutics microRNA Reprogramming Neural stem cells Neurons 



The authors wish to thank the Associazione Centro Dino Ferrari for their support.

Author Contributions

IF and SC conceived the idea, revised all the literature, and contributed to all parts. All authors read and approved the final manuscript.

Compliance with Ethical Standards

Conflict of Interests

The authors declare that they have no conflict of interest.


AriSLA provided financial support to SC through a research grant (AriSLAsmallRNALS). AriSLA had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript: and in the decision to publish the results.


  1. 1.
    Dametti S, Faravelli I, Ruggieri M et al (2015) Experimental advances towards neural regeneration from induced stem cells to direct in vivo reprogramming. Mol Neurobiol. doi: 10.1007/s12035-015-9181-7
  2. 2.
    Sandoe J, Eggan K (2013) Opportunities and challenges of pluripotent stem cell neurodegenerative disease models. Nat Neurosci 16:780–789. doi: 10.1038/nn.3425 CrossRefPubMedGoogle Scholar
  3. 3.
    Buffo A, Vosko MR, Ertürk D et al (2005) Expression pattern of the transcription factor Olig2 in response to brain injuries: implications for neuronal repair. Proc Natl Acad Sci U S A 102:18183–18188. doi: 10.1073/pnas.0506535102 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Jones KS, Connor B (2016) Adult neurogenesis and in vivo reprogramming: combining strategies for endogenous brain repair. Neural Regen Res 11:1748–1749. doi: 10.4103/1673–5374.194712 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Li H, Chen G (2016) In vivo reprogramming for CNS repair: regenerating neurons from endogenous glial cells. Neuron 91:728–738. doi: 10.1016/j.neuron.2016.08.004 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Merkle FT, Tramontin AD, García-Verdugo JM, Alvarez-Buylla A (2004) Radial glia give rise to adult neural stem cells in the subventricular zone. Proc Natl Acad Sci U S A 101:17528–17532. doi: 10.1073/pnas.0407893101 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Mu L, Berti L, Masserdotti G et al (2012) SoxC transcription factors are required for neuronal differentiation in adult hippocampal neurogenesis. J Neurosci 32:3067–3080. doi: 10.1523/JNEUROSCI.4679-11.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Faravelli I, Riboldi G, Nizzardo M et al (2014) Stem cell transplantation for amyotrophic lateral sclerosis: therapeutic potential and perspectives on clinical translation. Cell Mol Life Sci CMLS 71:3257–3268. doi: 10.1007/s00018-014-1613-4 CrossRefPubMedGoogle Scholar
  9. 9.
    Arlotta P, Berninger B (2014) Brains in metamorphosis: reprogramming cell identity within the central nervous system. Curr Opin Neurobiol 27:208–214. doi: 10.1016/j.conb.2014.04.007 CrossRefPubMedGoogle Scholar
  10. 10.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676. doi: 10.1016/j.cell.2006.07.024 CrossRefPubMedGoogle Scholar
  11. 11.
    Peng J, Zeng X (2011) The role of induced pluripotent stem cells in regenerative medicine: neurodegenerative diseases. Stem Cell Res Ther 2:32. doi: 10.1186/scrt73 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ruggieri M, Riboldi G, Brajkovic S et al (2014) Induced neural stem cells: methods of reprogramming and potential therapeutic applications. Prog Neurobiol 114:15–24. doi: 10.1016/j.pneurobio.2013.11.001 CrossRefPubMedGoogle Scholar
  13. 13.
    Vierbuchen T, Ostermeier A, Pang ZP et al (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463:1035–1041. doi: 10.1038/nature08797 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Pang ZP, Yang N, Vierbuchen T et al (2011) Induction of human neuronal cells by defined transcription factors. Nature 476:220–223. doi: 10.1038/nature10202 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Yoo AS, Sun AX, Li L et al (2011) MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476:228–231. doi: 10.1038/nature10323 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Srivastava D, DeWitt N (2016) In vivo cellular reprogramming: the next generation. Cell 166:1386–1396. doi: 10.1016/j.cell.2016.08.055 CrossRefPubMedGoogle Scholar
  17. 17.
    Ambros V (2001) microRNAs: tiny regulators with great potential. Cell 107:823–826CrossRefPubMedGoogle Scholar
  18. 18.
    Lee Y, Kim M, Han J et al (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060. doi: 10.1038/sj.emboj.7600385 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15:509–524. doi: 10.1038/nrm3838 CrossRefPubMedGoogle Scholar
  20. 20.
    Zong L, Zhu Y, Liang R, Zhao H-B (2016) Gap junction mediated miRNA intercellular transfer and gene regulation: a novel mechanism for intercellular genetic communication. Sci Rep 6:19884. doi: 10.1038/srep19884 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kuo C-H, Ying S-Y (2012) Advances in microRNA-mediated reprogramming technology. Stem Cells Int 2012:823709. doi: 10.1155/2012/823709 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Yang H, Zhang L, An J et al (2016) MicroRNA-mediated reprogramming of somatic cells into neural stem cells or neurons. Mol Neurobiol. doi: 10.1007/s12035-016-0115-9
  23. 23.
    Hu S, Wilson KD, Ghosh Z et al (2013) MicroRNA-302 increases reprogramming efficiency via repression of NR2F2. Stem Cells Dayt Ohio 31:259–268. doi: 10.1002/stem.1278 CrossRefGoogle Scholar
  24. 24.
    Gruber AJ, Zavolan M (2013) Modulation of epigenetic regulators and cell fate decisions by miRNAs. Epigenomics 5:671–683. doi: 10.2217/epi.13.65 CrossRefPubMedGoogle Scholar
  25. 25.
    Nam Y, Chen C, Gregory RI et al (2011) Molecular basis for interaction of let-7 microRNAs with Lin28. Cell 147:1080–1091. doi: 10.1016/j.cell.2011.10.020 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Stevanato L, Sinden JD (2014) The effects of microRNAs on human neural stem cell differentiation in two- and three-dimensional cultures. Stem Cell Res Ther 5:49. doi: 10.1186/scrt437 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Victor MB, Richner M, Hermanstyne TO et al (2014) Generation of human striatal neurons by microRNA-dependent direct conversion of fibroblasts. Neuron 84:311–323. doi: 10.1016/j.neuron.2014.10.016 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Richner M, Victor MB, Liu Y et al (2015) MicroRNA-based conversion of human fibroblasts into striatal medium spiny neurons. Nat Protoc 10:1543–1555. doi: 10.1038/nprot.2015.102 CrossRefPubMedGoogle Scholar
  29. 29.
    Zhou C, Gu H, Fan R et al (2015) MicroRNA 302/367 cluster effectively facilitates direct reprogramming from human fibroblasts into functional neurons. Stem Cells Dev 24:2746–2755. doi: 10.1089/scd.2015.0123 CrossRefPubMedGoogle Scholar
  30. 30.
    Ghasemi-Kasman M, Hajikaram M, Baharvand H, Javan M (2015) MicroRNA-mediated in vitro and in vivo direct conversion of astrocytes to neuroblasts. PLoS One 10:e0127878. doi: 10.1371/journal.pone.0127878 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Wohl SG, Reh TA (2016) miR-124-9-9* potentiates Ascl1-induced reprogramming of cultured Müller glia. Glia 64:743–762. doi: 10.1002/glia.22958 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Weinberg MS, Criswell HE, Powell SK et al (2017) Viral vector reprogramming of adult resident striatal oligodendrocytes into functional neurons. Mol Ther J Am Soc Gene Ther 25:928–934. doi: 10.1016/j.ymthe.2017.01.016 CrossRefGoogle Scholar
  33. 33.
    Humphries B, Yang C (2015) The microRNA-200 family: small molecules with novel roles in cancer development, progression and therapy. Oncotarget 6:6472–6498. doi: 10.18632/oncotarget.3052 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Peng C, Li N, Ng Y-K et al (2012) A unilateral negative feedback loop between miR-200 microRNAs and Sox2/E2F3 controls neural progenitor cell-cycle exit and differentiation. J Neurosci 32:13292–13308. doi: 10.1523/JNEUROSCI.2124-12.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Lagos-Quintana M, Rauhut R, Yalcin A et al (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12:735–739CrossRefPubMedGoogle Scholar
  36. 36.
    Landgraf P, Rusu M, Sheridan R et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401–1414. doi: 10.1016/j.cell.2007.04.040 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Conaco C, Otto S, Han J-J, Mandel G (2006) Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci U S A 103:2422–2427. doi: 10.1073/pnas.0511041103 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Deo M, Yu J-Y, Chung K-H et al (2006) Detection of mammalian microRNA expression by in situ hybridization with RNA oligonucleotides. Dev Dyn Off Publ Am Assoc Anat 235:2538–2548. doi: 10.1002/dvdy.20847 Google Scholar
  39. 39.
    Cheng L-C, Pastrana E, Tavazoie M, Doetsch F (2009) miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 12:399–408. doi: 10.1038/nn.2294 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Gu X, Fu C, Lin L et al (2017) miR-124 and miR-9 mediated downregulation of HDAC5 promotes neurite development through activating MEF2C-GPM6A pathway. J Cell Physiol. doi: 10.1002/jcp.25927
  41. 41.
    Xue Q, Yu C, Wang Y et al (2016) miR-9 and miR-124 synergistically affect regulation of dendritic branching via the AKT/GSK3β pathway by targeting Rap2a. Sci Rep 6:26781. doi: 10.1038/srep26781 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Yoo AS, Staahl BT, Chen L, Crabtree GR (2009) MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature 460:642–646. doi: 10.1038/nature08139 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Ambasudhan R, Talantova M, Coleman R et al (2011) Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. Cell Stem Cell 9:113–118. doi: 10.1016/j.stem.2011.07.002 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20. doi: 10.1016/j.cell.2004.12.035 CrossRefPubMedGoogle Scholar
  45. 45.
    Makeyev EV, Zhang J, Carrasco MA, Maniatis T (2007) The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27:435–448. doi: 10.1016/j.molcel.2007.07.015 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Xue Y, Ouyang K, Huang J et al (2013) Direct conversion of fibroblasts to neurons by reprogramming PTB-regulated microRNA circuits. Cell 152:82–96. doi: 10.1016/j.cell.2012.11.045 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Lau S, Rylander Ottosson D, Jakobsson J, Parmar M (2014) Direct neural conversion from human fibroblasts using self-regulating and nonintegrating viral vectors. Cell Rep 9:1673–1680. doi: 10.1016/j.celrep.2014.11.017 CrossRefPubMedGoogle Scholar
  48. 48.
    Heinrich C, Bergami M, Gascón S et al (2014) Sox2-mediated conversion of NG2 glia into induced neurons in the injured adult cerebral cortex. Stem Cell Rep 3:1000–1014. doi: 10.1016/j.stemcr.2014.10.007 CrossRefGoogle Scholar
  49. 49.
    Yao K, Qiu S, Tian L et al (2016) Wnt regulates proliferation and neurogenic potential of Müller glial cells via a Lin28/let-7 miRNA-dependent pathway in adult mammalian retinas. Cell Rep 17:165–178. doi: 10.1016/j.celrep.2016.08.078 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Adlakha YK, Seth P (2017) The expanding horizon of MicroRNAs in cellular reprogramming. Prog Neurobiol 148:21–39. doi: 10.1016/j.pneurobio.2016.11.003 CrossRefPubMedGoogle Scholar
  51. 51.
    Takeshita F, Patrawala L, Osaki M et al (2010) Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Mol Ther J Am Soc Gene Ther 18:181–187. doi: 10.1038/mt.2009.207 CrossRefGoogle Scholar
  52. 52.
    Fanini F, Fabbri M (2016) MicroRNAs and cancer resistance: A new molecular plot. Clin Pharmacol Ther 99:485–493. doi: 10.1002/cpt.353 CrossRefPubMedGoogle Scholar
  53. 53.
    Liu D, Li Y, Luo G et al (2017) LncRNA SPRY4-IT1 sponges miR-101-3p to promote proliferation and metastasis of bladder cancer cells through up-regulating EZH2. Cancer Lett 388:281–291. doi: 10.1016/j.canlet.2016.12.005 CrossRefPubMedGoogle Scholar
  54. 54.
    Murakami K, Miyagishi M (2014) Tiny masking locked nucleic acids effectively bind to mRNA and inhibit binding of microRNAs in relation to thermodynamic stability. Biomed Rep 2:509–512. doi: 10.3892/br.2014.260 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Beg MS, Brenner AJ, Sachdev J et al (2017) Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Investig New Drugs 35:180–188. doi: 10.1007/s10637-016-0407-y CrossRefGoogle Scholar
  56. 56.
    Krützfeldt J (2016) Strategies to use microRNAs as therapeutic targets. Best Pract Res Clin Endocrinol Metab 30:551–561. doi: 10.1016/j.beem.2016.07.004 CrossRefPubMedGoogle Scholar
  57. 57.
    Liu J, Meng T, Yuan M et al (2016) MicroRNA-200c delivered by solid lipid nanoparticles enhances the effect of paclitaxel on breast cancer stem cell. Int J Nanomedicine 11:6713–6725. doi: 10.2147/IJN.S111647 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Dengl S, Sustmann C, Brinkmann U (2016) Engineered hapten-binding antibody derivatives for modulation of pharmacokinetic properties of small molecules and targeted payload delivery. Immunol Rev 270:165–177. doi: 10.1111/imr.12386 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Stoica L, Sena-Esteves M (2016) Adeno associated viral vector delivered RNAi for gene therapy of SOD1 amyotrophic lateral sclerosis. Front Mol Neurosci 9:56. doi: 10.3389/fnmol.2016.00056 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Daya S, Berns KI (2008) Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev 21:583–593. doi: 10.1128/CMR.00008-08 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Zhou X, Yang P-C (2012) MicroRNA: a small molecule with a big biological impact. MicroRNA Shariqah United Arab Emir 1:1Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore PoliclinicoUniversity of MilanMilanItaly

Personalised recommendations