Skip to main content
Log in

Cytoskeleton as a Target of Quinolinic Acid Neurotoxicity: Insight from Animal Models

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Cytoskeletal proteins are increasingly recognized as having important roles as a target of the action of different neurotoxins. In the last years, several works of our group have shown that quinolinic acid (QUIN) was able to disrupt the homeostasis of the cytoskeleton of neural cells and this was associated with cell dysfunction and neurodegeneration. QUIN is an excitotoxic metabolite of tryptophan metabolism and its accumulation is associated with several neurodegenerative diseases. In the present review, we provide a comprehensive view of the actions of QUIN upstream of glutamate receptors, eliciting kinase/phosphatase signaling cascades that disrupt the homeostasis of the phosphorylation system associated with intermediate filament proteins of astrocytes and neurons. We emphasize the critical role of calcium in these actions and the evidence that misregulated cytoskeleton takes part of the cell response to the injury resulting in neurodegeneration in different brain regions, disrupted cell signaling in acute tissue slices, and disorganized cytoskeleton with altered cell morphology in primary cultures. We also discuss the interplay among misregulated cytoskeleton, oxidative stress, and cell-cell contact through gap junctions mediating the quinolinic acid injury in rat brain. The increasing amount of cross talks identified between cytoskeletal proteins and cellular signaling cascades reinforces the exciting possibility that cytoskeleton could be a new target in the neurotoxicity of QUIN and further studies will be necessary to develop strategies to protect the cytoskeleton and counteracts the cytotoxicity of this metabolite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chen Y, Guillemin GJ (2009) Kynurenine pathway metabolites in humans: disease and healthy states. Int J Tryptophan Res 2:1–19

    Article  PubMed  PubMed Central  Google Scholar 

  2. Schwarcz R, Bruno JP, Muchowski PJ, Wu H-Q (2012) Kynurenines in the mammalian brain: when physiology meets pathology. Nature Reviews/Neuroscience 13:464–476

    Google Scholar 

  3. Lugo-Huitron R, Ugalde Muniz P, Pineda B, Pedraza-Chaverri J, Rios C, Perez-de la Cruz V (2013) Quinolinic acid: an endogenous neurotoxin with multiple targets. Oxidative Med Cell Longev 2013:104024. doi:10.1155/2013/104024

    Article  Google Scholar 

  4. Perez-De La Cruz V, Carrillo-Mora P, Santamaria A (2012) Quinolinic acid, an endogenous molecule combining excitotoxicity, oxidative stress and other toxic mechanisms. Int J Tryptophan Res 5:1–8. doi:10.4137/IJTR.S8158

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Pessoa-Pureur R, Wajner M (2007) Cytoskeleton as a potential target in the neuropathology of maple syrup urine disease: insight from animal studies. J Inherit Metab Dis Oct;30(5)::664–672

  6. Zamoner A, and Pessoa-Pureur R (2011) Nongenomic actions of thyroid hormones: every why has a wherefore. Immunology, Endocrine & Metabolic Agents in medical chemistry 11(3): :165-178

  7. Pessoa-Pureur R, Heimfarth L, Rocha JB (2014) Signaling mechanisms and disrupted cytoskeleton in the diphenyl ditelluride neurotoxicity. Oxidative Med Cell Longev 2014:458601. doi:10.1155/2014/458601

    Article  Google Scholar 

  8. Huber F, Boire A, Lopez MP, Koenderink GH (2015) Cytoskeletal crosstalk: when three different personalities team up. Curr Opin Cell Biol 32:39–47. doi:10.1016/j.ceb.2014.10.005

    Article  CAS  PubMed  Google Scholar 

  9. Bolin K, Rachmaninoff N, Moncada K, Pula K, Kennell J, Buttitta L (2016) miR-8 modulates cytoskeletal regulators to influence cell survival and epithelial organization in drosophila wings. Dev Biol 412(1):83–98. doi:10.1016/j.ydbio.2016.01.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yi B, Chen L, Zeng J, Cui J, Wang G, Qian G, Belguise K, Wang X, Lu K (2015) Ezrin regulating the cytoskeleton remodeling is required for hypoxia-induced myofibroblast proliferation and migration. Front Cardiovasc Med 3: 2:10,

  11. Compagnucci C, Piemonte F, Sferra A, Piermarini E, Bertini E (2016) The cytoskeletal arrangements necessary to neurogenesis. Oncotarget 7(15):19414–19429. doi:10.18632/oncotarget.6838

    Article  PubMed  PubMed Central  Google Scholar 

  12. Le Clainche C, Carlier MF (2008) Regulation of actin assembly associated with protrusion and adhesion in cell migration. Physiol Rev 88(2):489–513. doi:10.1152/physrev.00021.2007

    Article  PubMed  Google Scholar 

  13. Xiong T, Liu J, Dai G, Hou Y, Tan B, Zhang Y, Li S, Song Y et al (2015) The progressive changes of filamentous actin cytoskeleton in the hippocampal neurons after pilocarpine-induced status epilepticus. Epilepsy Res 118:55–67. doi:10.1016/j.eplepsyres.2015.11.002

    Article  CAS  PubMed  Google Scholar 

  14. Herrmann H, Bar H, Kreplak L, Strelkov SV, Aebi U (2007) Intermediate filaments: from cell architecture to nanomechanics. Nat Rev Mol Cell Biol 8(7):562–573. doi:10.1038/nrm2197

    Article  CAS  PubMed  Google Scholar 

  15. Gentil BJ, Tibshirani M, Durham HD (2015) Neurofilament dynamics and involvement in neurological disorders. Cell Tissue Res 360(3):609–620. doi:10.1007/s00441-014-2082-7

    Article  CAS  PubMed  Google Scholar 

  16. Laser-Azogui A, Kornreich M, Malka-Gibor E, Beck R (2015) Neurofilament assembly and function during neuronal development. Curr Opin Cell Biol 32:92–101. doi:10.1016/j.ceb.2015.01.003

    Article  CAS  PubMed  Google Scholar 

  17. Beck R, Deek J, Choi MC, Ikawa T, Watanabe O, Frey E, Pincus P, Safinya CR (2010) Unconventional salt trend from soft to stiff in single neurofilament biopolymers. Langmuir 26(24):18595–18599. doi:10.1021/la103655x

    Article  CAS  PubMed  Google Scholar 

  18. Mellad JA, Warren DT, Shanahan CM (2011) Nesprins LINC the nucleus and cytoskeleton. Curr Opin Cell Biol 23(1):47–54. doi:10.1016/j.ceb.2010.11.006

    Article  CAS  PubMed  Google Scholar 

  19. Rao MV, Engle LJ, Mohan PS, Yuan A, Qiu D, Cataldo A, Hassinger L, Jacobsen S et al (2002) Myosin Va binding to neurofilaments is essential for correct myosin Va distribution and transport and neurofilament density. J Cell Biol 159(2):279–290. doi:10.1083/jcb.200205062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rao MV, Mohan PS, Kumar A, Yuan A, Montagna L, Campbell J, Veeranna EEM, Julien JP et al (2011) The myosin Va head domain binds to the neurofilament-L rod and modulates endoplasmic reticulum (ER) content and distribution within axons. PLoS One 6(2):e17087. doi:10.1371/journal.pone.0017087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Macioce P, Gandolfi N, Leung CL, Chin SS, Malchiodi-Albedi F, Ceccarini M, Petrucci TC, Liem RK (1999) Characterization of NF-L and betaIISigma1-spectrin interaction in live cells. Exp Cell Res 250(1):142–154. doi:10.1006/excr.1999.4479

    Article  CAS  PubMed  Google Scholar 

  22. Wiche G, Winter L (2011) Plectin isoforms as organizers of intermediate filament cytoarchitecture. BioArchitecture 1(1):14–20. doi:10.4161/bioa.1.1.14630

    Article  PubMed  PubMed Central  Google Scholar 

  23. Koutras C, Levesque G (2011) Identification of novel NPRAP/delta-catenin-interacting proteins and the direct association of NPRAP with dynamin 2. PLoS One 6(10):e25379. doi:10.1371/journal.pone.0025379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ehlers MD, Fung ET, O'Brien RJ, Huganir RL (1998) Splice variant-specific interaction of the NMDA receptor subunit NR1 with neuronal intermediate filaments. J Neurosci 18(2):720–730

    Article  CAS  PubMed  Google Scholar 

  25. Yabe JT, Chylinski T, Wang FS, Pimenta A, Kattar SD, Linsley MD, Chan WK, Shea TB (2001) Neurofilaments consist of distinct populations that can be distinguished by C-terminal phosphorylation, bundling, and axonal transport rate in growing axonal neurites. J Neurosci 21(7):2195–2205

    Article  CAS  PubMed  Google Scholar 

  26. Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6(8):626–640. doi:10.1038/nrn1722

    Article  CAS  PubMed  Google Scholar 

  27. Pirttimaki TM, Parri HR (2013) Astrocyte plasticity: implications for synaptic and neuronal activity. Neuroscientist 19(6):604–615. doi:10.1177/1073858413504999

    Article  PubMed  Google Scholar 

  28. Middeldorp J, Hol EM (2011) GFAP in health and disease. Prog Neurobiol 93(3):421–443. doi:10.1016/j.pneurobio.2011.01.005

    Article  CAS  PubMed  Google Scholar 

  29. Hol EM, Pekny M (2015) Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr Opin Cell Biol 32:121–130. doi:10.1016/j.ceb.2015.02.004

    Article  CAS  PubMed  Google Scholar 

  30. Orre M, Kamphuis W, Osborn LM, Jansen AH, Kooijman L, Bossers K, Hol EM (2014) Isolation of glia from Alzheimer’s mice reveals inflammation and dysfunction. Neurobiol Aging 35(12):2746–2760. doi:10.1016/j.neurobiolaging.2014.06.004

    Article  CAS  PubMed  Google Scholar 

  31. Kamphuis W, Orre M, Kooijman L, Dahmen M, Hol EM (2012) Differential cell proliferation in the cortex of the APPswePS1dE9 Alzheimer’s disease mouse model. Glia 60(4):615–629. doi:10.1002/glia.22295

    Article  PubMed  Google Scholar 

  32. Kamphuis W, Middeldorp J, Kooijman L, Sluijs JA, Kooi EJ, Moeton M, Freriks M, Mizee MR et al (2014) Glial fibrillary acidic protein isoform expression in plaque related astrogliosis in Alzheimer’s disease. Neurobiol Aging 35(3):492–510. doi:10.1016/j.neurobiolaging.2013.09.035

    Article  CAS  PubMed  Google Scholar 

  33. Ubersax JA, Ferrell JE Jr (2007) Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol 8(7):530–541. doi:10.1038/nrm2203

    Article  CAS  PubMed  Google Scholar 

  34. Sihag RK, Nixon RA (1991) Identification of Ser-55 as a major protein kinase a phosphorylation site on the 70-kDa subunit of neurofilaments. Early turnover during axonal transport. J Biol Chem 266(28):18861–18867

    CAS  PubMed  Google Scholar 

  35. Omary MB, Ku NO, Tao GZ, Toivola DM, Liao J (2006) "heads and tails" of intermediate filament phosphorylation: multiple sites and functional insights. Trends Biochem Sci 31(7):383–394. doi:10.1016/j.tibs.2006.05.008

    Article  CAS  PubMed  Google Scholar 

  36. Shea TB, Chan WK (2008) Regulation of neurofilament dynamics by phosphorylation. Eur J Neurosci 27(8):1893–1901. doi:10.1111/j.1460-9568.2008.06165.x

    Article  PubMed  Google Scholar 

  37. Sihag RK, Inagaki M, Yamaguchi T, Shea TB, Pant HC (2007) Role of phosphorylation on the structural dynamics and function of types III and IV intermediate filaments. Exp Cell Res 313(10):2098–2109. doi:10.1016/j.yexcr.2007.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhou J, Wang H, Feng Y, Chen J (2010) Increased expression of cdk5/p25 in N2a cells leads to hyperphosphorylation and impaired axonal transport of neurofilament proteins. Life Sci 86:532–537

    Article  CAS  PubMed  Google Scholar 

  39. GRANT P, PANT HC (2000) Neurofilament protein synthesis and phosphorylation. Journal of Neurocytology 29:843–872

    Article  CAS  PubMed  Google Scholar 

  40. Lee S, Pant HC, Shea TB (2014) Divergent and convergent roles for kinases and phosphatases in neurofilament dynamics. J Cell Sci 127(Pt 18):4064–4077. doi:10.1242/jcs.153346

    Article  CAS  PubMed  Google Scholar 

  41. Lewis SE, Nixon RA (1988) Multiple phosphorylated variants of the high molecular mass subunit of neurofilaments in axons of retinal cell neurons: characterization and evidence for their differential association with stationary and moving neurofilaments. J Cell Biol 107(6 Pt 2):2689–2701

    Article  CAS  PubMed  Google Scholar 

  42. Yabe JT, Pimenta A, Shea TB (1999) Kinesin-mediated transport of neurofilament protein oligomers in growing axons. J Cell Sci 112 ( Pt 21):3799–3814

  43. Shea TB, Chan WK, Kushkuley J, Lee S (2009) Organizational dynamics, functions, and pathobiological dysfunctions of neurofilaments. Results Probl Cell Differ 48:29–45. doi:10.1007/400_2009_8

    CAS  PubMed  Google Scholar 

  44. Motil J, Chan WK, Dubey M, Chaudhury P, Pimenta A, Chylinski TM, Ortiz DT, Shea TB (2006) Dynein mediates retrograde neurofilament transport within axons and anterograde delivery of NFs from perikarya into axons: regulation by multiple phosphorylation events. Cell Motil Cytoskeleton 63(5):266–286. doi:10.1002/cm.20122

    Article  CAS  PubMed  Google Scholar 

  45. Shea TB, Chan A (2008) S-adenosyl methionine: a natural therapeutic agent effective against multiple hallmarks and risk factors associated with Alzheimer’s disease. J Alzheimers Dis 13(1):67–70

    Article  CAS  PubMed  Google Scholar 

  46. Bajaj NPS, Al-Sarraj ST, Leigh PN, Anderson V, Miller CCJ (1999) Cyclin dependent kinase 5 (cdk5) phosphorylates neurofilament heavy (NF-H) chain to generate epitopes for antibodies that label neurofilament affected motor neurons in ALS. Neuro-Psychopharm Biol Psychiat 23:833–850

    Article  CAS  Google Scholar 

  47. Strong MJ, Strong WL, Jaffe H, Traggert B, Sopper MM, Pant HC (2001) Phosphorylation state of the native high-molecular-weight neurofilament subunit protein from cervical spinal cord in sporadic amyotrophic lateral sclerosis. J Neurochem 76(5):1315–1325

    Article  CAS  PubMed  Google Scholar 

  48. Sontag E, Hladik C, Montgomery L, Luangpirom A, Mudrak I, Ogris E, White CL 3rd (2004) Downregulation of protein phosphatase 2A carboxyl methylation and methyltransferase may contribute to Alzheimer disease pathogenesis. J Neuropathol Exp Neurol 63(10):1080–1091

    Article  CAS  PubMed  Google Scholar 

  49. Loureiro SO, Heimfarth L, Lacerda BA, Vidal LF, Soska A, dos Santos NG, de Souza Wyse AT, Pessoa-Pureur R (2010) Homocysteine induces hypophosphorylation of intermediate filaments and reorganization of actin cytoskeleton in C6 glioma cells. Cell Mol Neurobiol 30(4):557–568. doi:10.1007/s10571-009-9480-5

    Article  CAS  PubMed  Google Scholar 

  50. Fernandes CG, Pierozan P, Soares GM, Ferreira F, Zanatta A, Amaral AU, Borges CG, Wajner M et al (2015) NMDA receptors and oxidative stress induced by the major metabolites accumulating in HMG Lyase deficiency mediate hypophosphorylation of cytoskeletal proteins in brain from adolescent rats: potential mechanisms contributing to the neuropathology of this disease. Neurotox Res 28(3):239–252. doi:10.1007/s12640-015-9542-z

    Article  CAS  PubMed  Google Scholar 

  51. Carvalho RV, da Silva FF, Heimfarth L, Pierozan P, Fernandes C, Pessoa-Pureur R (2016) Acute hyperammonemia induces NMDA-mediated hypophosphorylation of intermediate filaments through PP1 and PP2B in cerebral cortex of young rats. Neurotox Res 30(2):138–149. doi:10.1007/s12640-016-9607-7

    Article  CAS  PubMed  Google Scholar 

  52. Bordelon YM, Chesselet MF, Nelson D, Welsh F, Erecinska M (1997) Energetic dysfunction in quinolinic acid-lesioned rat striatum. J Neurochem 69(4):1629–1639

    Article  CAS  PubMed  Google Scholar 

  53. Portera-Cailliau C, Hedreen JC, Price DL, Koliatsos VE (1995) Evidence for apoptotic cell death in Huntington disease and excitotoxic animal models. J Neurosci 15 (5 Pt 2):3775–3787

  54. Braidy N, Grant R, Adams S, Brew BJ, Guillemin GJ (2009) Mechanism for quinolinic acid cytotoxicity in human astrocytes and neurons. Neurotox Res 16(1):77–86. doi:10.1007/s12640-009-9051-z

    Article  CAS  PubMed  Google Scholar 

  55. Ramaswamy S, McBride JL, Kordower JH (2007) Animal models of Huntington’s disease. ILAR J 48(4):356–373

    Article  CAS  PubMed  Google Scholar 

  56. Pierozan P, Zamoner A, Soska AK, Silvestrin RB, Loureiro SO, Heimfarth L, Mello e Souza T, Wajner M, Pessoa-Pureur R (2010) Acute intrastriatal administration of quinolinic acid provokes hyperphosphorylation of cytoskeletal intermediate filament proteins in astrocytes and neurons of rats. Exp Neurol 224 (1):188–196. doi:10.1016/j.expneurol.2010.03.009

  57. Gill SR, Wong PC, Monteiro MJ, Cleveland DW (1990) Assembly properties of dominant and recessive mutations in the small mouse neurofilament (NF-L) subunit. J Cell Biol 111(5 Pt 1):2005–2019

    Article  CAS  PubMed  Google Scholar 

  58. Heins S, Wong PC, Muller S, Goldie K, Cleveland DW, Aebi U (1993) The rod domain of NF-L determines neurofilament architecture, whereas the end domains specify filament assembly and network formation. J cell Biol 123(6 Pt 1):1517–1533

    Article  CAS  PubMed  Google Scholar 

  59. Pierozan P, Gonçalves FC, Ferreira F, Pessoa-Pureur R (2014) Acute intrastriatal injection of quinolinic acid provokes long-lasting misregulation of the cytoskeleton in the striatum, cerebral cortex and hippocampus of young rats. Brain res Aug 19:1577:1571–1510

  60. Holmgren A, Bouhy D, Timmerman V (2012) Neurofilament phosphorylation and their proline-directed kinases in health and disease. J Peripher Nerv Syst 17(4):365–376. doi:10.1111/j.1529-8027.2012.00434.x

    Article  CAS  PubMed  Google Scholar 

  61. Pierozan P, Fernandes CG, Dutra MF, Pandolfo P, Ferreira F, de Lima BO, Porciuncula L, Wajner M et al (2014) Biochemical, histopathological and behavioral alterations caused by intrastriatal administration of quinolic acid to young rats. FEBS J 281(8):2061–2073. doi:10.1111/febs.12762

    Article  CAS  PubMed  Google Scholar 

  62. Pierozan P, Zamoner A, Soska AK, de Lima BO, Reis KP, Zamboni F, Wajner M, Pessoa-Pureur R (2012) Signaling mechanisms downstream of quinolinic acid targeting the cytoskeleton of rat striatal neurons and astrocytes. Exp Neurol 233(1):391–399. doi:10.1016/j.expneurol.2011.11.005

    Article  CAS  PubMed  Google Scholar 

  63. Steiner D, Saya D, Schallmach E, Simonds WF, Vogel Z (2006) Adenylyl cyclase type-VIII activity is regulated by G (betagamma) subunits. Cell Signal 18(1):62–68

    Article  CAS  PubMed  Google Scholar 

  64. Bonsi P, Platania P, Martella G, Madeo G, Vita D, Tassone A, Bernardi G, Pisani A (2008) Distinct roles of group I mGlu receptors in striatal function. Neuropharmacology 55(4):392–395. doi:10.1016/j.neuropharm.2008.05.020

    Article  CAS  PubMed  Google Scholar 

  65. Ribeiro FM, Paquet M, Cregan SP, Ferguson SS (2010) Group I metabotropic glutamate receptor signalling and its implication in neurological disease. CNS Neurol Disord Drug Targets 9(5):574–595

    Article  CAS  PubMed  Google Scholar 

  66. Wang Q, Walsh DM, Rowan MJ, Selkoe DJ, Anwyl R (2004) Block of long-term potentiation by naturally secreted and synthetic amyloid beta-peptide in hippocampal slices is mediated via activation of the kinases c-Jun N-terminal kinase, cyclin-dependent kinase 5, and p38 mitogen-activated protein kinase as well as metabotropic glutamate receptor type 5. J Neurosci 24(13):3370–3378. doi:10.1523/JNEUROSCI.1633-03.2004

    Article  CAS  PubMed  Google Scholar 

  67. Pierozan P, Ferreira F, de Lima BO, Pessoa-Pureur R (2015) Quinolinic acid induces disrupts cytoskeletal homeostasis in striatal neurons. Protective role of astrocyte-neuron interaction. J Neurosci Res 93(2):268–284. doi:10.1002/jnr.23494

    Article  CAS  PubMed  Google Scholar 

  68. Huber F, Montani M, Sulser T, Jaggi R, Wild P, Moch H, Gevensleben H, Schmid M et al (2015) Comprehensive validation of published immunohistochemical prognostic biomarkers of prostate cancer —what has gone wrong? A blueprint for the way forward in biomarker studies. Br J Cancer 112(1):140–148. doi:10.1038/bjc.2014.588

    Article  CAS  PubMed  Google Scholar 

  69. Chang L, Goldman RD (2004) Intermediate filaments mediate cytoskeletal crosstalk. Nat Rev Mol Cell Biol 5(8):601–613. doi:10.1038/nrm1438

    Article  CAS  PubMed  Google Scholar 

  70. Tan L, Yu JT (2012) The kynurenine pathway in neurodegenerative diseases: mechanistic and therapeutic considerations. J Neurol Sci 323(1–2):1–8. doi:10.1016/j.jns.2012.08.005

    Article  CAS  PubMed  Google Scholar 

  71. Pierozan P, Fernandes CG, Dutra MF, Pandolfo P, Ferreira F, de Lima BO, Porciúncula L, Wajner M et al (2014) Biochemical, histopathological and behavioral alterations caused by intrastriatal administration of quinolic acid to young rats. FEBS J 281(5)

  72. Pierozan P, Biasibetti H, Schmitz F, Avila H, Parisi MM, Barbe-Tuana F, Wyse AT, Pessoa-Pureur R (2016) Quinolinic acid neurotoxicity: differential roles of astrocytes and microglia via FGF-2-mediated signaling in redox-linked cytoskeletal changes. Biochim Biophys Acta 1863(12):3001–3014. doi:10.1016/j.bbamcr.2016.09.014

    Article  CAS  PubMed  Google Scholar 

  73. Pierozan P, Ferreira F, Ortiz de Lima B, Goncalves Fernandes C, Totarelli Monteforte P, de Castro MN, Bincoletto C, Soubhi Smaili S et al (2014) The phosphorylation status and cytoskeletal remodeling of striatal astrocytes treated with quinolinic acid. Exp Cell Res 322(2):313–323. doi:10.1016/j.yexcr.2014.02.024

    Article  CAS  PubMed  Google Scholar 

  74. Freese A, DiFiglia M, Koroshetz WJ, Beal MF, Martin JB (1990) Characterization and mechanism of glutamate neurotoxicity in primary striatal cultures. Brain Res 521(1–2):254–264

    Article  CAS  PubMed  Google Scholar 

  75. Lamprecht R (2016) The role of actin cytoskeleton in memory formation in amygdala. Front Mol Neurosci 9:23. doi:10.3389/fnmol.2016.00023

    Article  PubMed  PubMed Central  Google Scholar 

  76. Chazeau A, Giannone G (2016) Organization and dynamics of the actin cytoskeleton during dendritic spine morphological remodeling. Cell Mol Life Sci 73(16):3053–3073. doi:10.1007/s00018-016-2214-1

    Article  CAS  PubMed  Google Scholar 

  77. Yuan A, Rao MV, Veeranna NRA (2017) Neurofilaments and neurofilament proteins in health and disease. Cold Spring Harb Perspect Biol 9(4). doi:10.1101/cshperspect.a018309

  78. Asahara H, Taniwaki T, Ohyagi Y, Yamada T, Kira J (1999) Glutamate enhances phosphorylation of neurofilaments in cerebellar granule cell culture. J Neurol Sci 171(2):84–87

    Article  CAS  PubMed  Google Scholar 

  79. Ackerley S, Grierson AJ, Brownlees J, Thornhill P, Anderton BH, Leigh PN, Shaw CE, Miller CC (2000) Glutamate slows axonal transport of neurofilaments in transfected neurons. J Cell Biol 150(1):165–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yano S, Fukunaga K, Ushio Y, Miyamoto E (1994) Activation of Ca2+/calmodulin-dependent protein kinase II and phosphorylation of intermediate filament proteins by stimulation of glutamate receptors in cultured rat cortical astrocytes. J Biol Chem 269(7):5428–5439

    CAS  PubMed  Google Scholar 

  81. Kommers T, Rodnight R, Boeck C, Vendite D, Oliveira D, Horn J, Oppelt D, Wofchuk S (2002) Phosphorylation of glial fibrillary acidic protein is stimulated by glutamate via NMDA receptors in cortical microslices and in mixed neuronal/glial cell cultures prepared from the cerebellum. Developmental Brain Research 137(2):139–148

    Article  CAS  PubMed  Google Scholar 

  82. Chew SS, Johnson CS, Green CR, Danesh-Meyer HV (2010) Role of connexin43 in central nervous system injury. Exp Neurol 225(2):250–261. doi:10.1016/j.expneurol.2010.07.014

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regina Pessoa-Pureur.

Ethics declarations

Funding

This work was supported by grants of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) [grant number 303913/2013–4] and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) [grant number 11/0897–0].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pierozan, P., Pessoa-Pureur, R. Cytoskeleton as a Target of Quinolinic Acid Neurotoxicity: Insight from Animal Models. Mol Neurobiol 55, 4362–4372 (2018). https://doi.org/10.1007/s12035-017-0654-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0654-8

Keywords

Navigation