Advertisement

Molecular Neurobiology

, Volume 55, Issue 5, pp 4345–4361 | Cite as

Molecular Chaperone Hsp70 and Its Constitutively Active Form Hsc70 Play an Indispensable Role During Eye Development of Drosophila melanogaster

  • Ajay Kumar
  • Anand K. Tiwari
Article

Abstract

In the present study, we demonstrate that molecular chaperone Hsp70 and Hsc70 is essential for normal organization and development of ommatidial cells in Drosophila melanogaster eye. An exogenously expressed dominant negative mutant of Hsp70 (K71E) and Hsc70.4 (K71S and D206S) in an eye-specific manner resulted in eye degeneration that includes loss of eye pigment, disorganized ommatidia, abnormality in bristle cell arrangement and reduction in the eye size. The developmental organization of ommatidial cells (cone, photoreceptor, pigment, and bristle cell complex) was disturbed in Hsp70 and Hsc70 mutants. Acridine orange (AO) and caspase 3 staining showed an increased cell death in Hsp70 and Hsc70 mutant eyes. Genetic interaction study of Hsp70 and Hsc70 mutants with candidate genes of JNK signaling pathway and immunocytochemistry study using phospho-JNK antibody suggested that mutation in Hsp70 and Hsc70 results in ectopic activation of JNK signaling in fly eye. Further, anti-PH3 staining in Hsp70 and Hsc70 mutant eyes revealed a reduced number of mitotic cells in second mitotic wave (SMW) of developing eye and anti-Rh1 staining showed reduced Rh1 expression, accumulation of Rh1 in the cytoplasm, and rhabdomere degeneration. Thus, on the basis of results, it was concluded that molecular chaperone Hsp70 and Hsc70 play an indispensable role during Drosophila eye development.

Keywords

Dominant negative mutation Hsp70 (K71E) Hsc70 (K71S) Drosophila eye F-actin accumulation Excessive cell death Caspase activation JNK signaling 

Notes

Acknowledgments

We thank Prof. J. K. Roy (Banaras Hindu University, Varanasi, India), Prof. Nancy M. Bonini (Howard Hughes Medical Institute) for UAS-Hsp70 K71E , Prof. Drick Bohman (University of Rochester Medical Center, Rochester, NY USA) for UAS-Bsk DN , Prof. Martinez-Arias (University of Cambridge, UK) for puc E69 , Prof. M. Miura (Graduate Institute of Pharmaceuticals Sciences, University of Tokyo) for UAS-eiger, and Bloomington Drosophila stock Centre (Indiana University, 1001 E. Third St. Bloomington, USA) for fly stocks. We also thank Prof. Patric Dolph (Dart Morth College Medical School, USA) for anti-Rh1 antibody. The financial assistance from Department of Science & Technology (DST), New Delhi, India, to AKT (SR/FT/LS-1/2010), Laser Scanning Confocal Microscope facility supported by the Department of Biotechnology (DBT), India, and support from The Puri Foundation for Education in India is duly acknowledged.

Authors’ Contributions

Conceived and designed the experiments: AK and AKT. Performed the experiments: AK. Analyzed the data: AK and AKT. Wrote the paper: AK and AKT. All authors reviewed the manuscript.

Compliance with Ethical Standards

Funding

This work was supported by the Department of Science and Technology (DST), New Delhi, India, to AKT (SR/FT/LS-1/2010).

Conflict of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

12035_2017_650_MOESM1_ESM.tif (4.6 mb)
Supplementary Figure 1 Mutation in Hsp70 and Hsc70 results in excessive cell death in larval and pupal eyes. (a-c) AO staining in third instar larval eye imaginal disc of Oregon R+ (a), UAS-Hsp70 K71E -GMR-GAL4/+ (b) and UAS-Hsc70.4 K71S -GMR-GAL4/+ (c). (d-f) AO staining in 50 hr pupal eyes from Oregon R+ (d), UAS-Hsp70 K71E -GMR-GAL4/+ (e) and UAS-Hsc70.4 K71S -GMR-GAL4/+ (f). Eyes from Hsp70 and Hsc70 mutants showed an increase cell death. AO staining seen at the periphery of pupal eyes in contol represents the developmental apoptosis (d, arrow). Scale Bar represents 100 μm (a-f). (Total 10 eyes (larval & pupal) were used for cell death observations). (TIFF 4717 kb)
12035_2017_650_MOESM2_ESM.tif (4.4 mb)
Supplementary Figure 2 F-actin (Green) and anti-Hsp70 (5A5) (Red) staining in 50 h pupal eyes of control, Hsp70 and Hsc70 mutants. (a-d) F-actin stained 50 h pupal eyes of GMR-GAL4/+ showing proper organization of cone, pigment and bristle cell (a), a severely disorganized cone, pigment and bristle cells with actin accumulation in UAS-Hsp70 K71E -GMR-GAL4/+ eyes (b, arrow), a less severe disorganized cone, pigment and bristle cells with less actin accumulation in UAS-Hsc70.4 K71S -GMR-GAL4/+ eye was observed (c, arrow) while in GMR-GAL4/+;UAS-Hsc70.4 RNAi /+ less affected actin cytoskeleton and normally arranged cone, pigment and bristle cells were observed (d). (e-h) Anti-Hsp70 staining in GMR-GAL4/+ showing basal level of Hsp70 protein expression in GMR-GAL4/+ (e), depleted Hsp70 protein in UAS-Hsp70 K71E -GMR-GAL4/+ (f, arrow), slightly upregulated Hsp70 protein in UAS-Hsc70.4 K71S -GMR-GAL4/+ (g) and strongly upregulated Hsp70 protein in GMR-GAL4/+;UAS-Hsc70.4 RNAi /+eye (h). (i-l) are the merged images of (a & e), (b & f), (c & g) and (d & h) respectively. Scale bars represent 20 μm (a-l). (Total 10 pupal eyes were used from each group). (TIFF 4539 kb)
12035_2017_650_MOESM3_ESM.doc (37 kb)
Supplementary Table 1 Various phenotype shown by Hsc70 (Hsc70.4) and Hsp70 mutants driven by GMR-GAL4. (DOC 37 kb)

References

  1. 1.
    Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU (2013) Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 82:323–355. doi: 10.1146/annurev-biochem-060208-092442 CrossRefPubMedGoogle Scholar
  2. 2.
    Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475(7356):324–332. doi: 10.1038/nature10317 CrossRefPubMedGoogle Scholar
  3. 3.
    Chirico WJ, Waters MG, Blobel G (1988) 70K heat shock related proteins stimulate protein translocation into microsomes. Nature 332(6167):805–810. doi: 10.1038/332805a0 CrossRefPubMedGoogle Scholar
  4. 4.
    Deshaies RJ, Koch BD, Werner-Washburne M, Craig EA, Schekman R (1988) A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature 332(6167):800–805. doi: 10.1038/332800a0 CrossRefPubMedGoogle Scholar
  5. 5.
    Walton PA, Wendland M, Subramani S, Rachubinski RA, Welch WJ (1994) Involvement of 70-kD heat-shock proteins in peroxisomal import. J Cell Biol 125(5):1037–1046CrossRefPubMedGoogle Scholar
  6. 6.
    Hunt C, Morimoto RI (1985) Conserved features of eukaryotic hsp70 genes revealed by comparison with the nucleotide sequence of human hsp70. Proc Natl Acad Sci U S A 82(19):6455–6459CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Rubin DM, Mehta AD, Zhu J, Shoham S, Chen X, Wells QR, Palter KB (1993) Genomic structure and sequence analysis of Drosophila melanogaster HSC70 genes. Gene 128(2):155–163CrossRefPubMedGoogle Scholar
  8. 8.
    Shopland LS, Lis JT (1996) HSF recruitment and loss at most Drosophila heat shock loci is coordinated and depends on proximal promoter sequences. Chromosoma 105(3):158–171CrossRefPubMedGoogle Scholar
  9. 9.
    Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282. doi: 10.1146/annurev.physiol.61.1.243 CrossRefPubMedGoogle Scholar
  10. 10.
    Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55:1151–1191. doi: 10.1146/annurev.bi.55.070186.005443 CrossRefPubMedGoogle Scholar
  11. 11.
    Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677. doi: 10.1146/annurev.ge.22.120188.003215 CrossRefPubMedGoogle Scholar
  12. 12.
    Shukla AK, Pragya P, Chaouhan HS, Tiwari AK, Patel DK, Abdin MZ, Chowdhuri DK Heat shock protein-70 (Hsp-70) suppresses paraquat-induced neurodegeneration by inhibiting JNK and caspase-3 activation in Drosophila model of Parkinson's disease. PLoS One 9(6):e98886. doi: 10.1371/journal.pone.0098886
  13. 13.
    Gong WJ, Golic KG (2006) Loss of Hsp70 in Drosophila is pleiotropic, with effects on thermotolerance, recovery from heat shock and neurodegeneration. Genetics 172(1):275–286. doi: 10.1534/genetics.105.048793 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Cobreros L, Fernandez-Minan A, Luque CM, Gonzalez-Reyes A, Martin-Bermudo MD (2008) A role for the chaperone Hsp70 in the regulation of border cell migration in the Drosophila ovary. Mech Dev 125(11–12):1048–1058. doi: 10.1016/j.mod.2008.07.006 CrossRefPubMedGoogle Scholar
  15. 15.
    Auluck PK, Chan HY, Trojanowski JQ, Lee VM, Bonini NM (2002) Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science 295(5556):865–868. doi: 10.1126/science.1067389 CrossRefPubMedGoogle Scholar
  16. 16.
    Shukla AK, Pragya P, Chaouhan HS, Tiwari AK, Patel DK, Abdin MZ, Chowdhuri DK (2014) Heat shock protein-70 (Hsp-70) suppresses paraquat-induced neurodegeneration by inhibiting JNK and caspase-3 activation in Drosophila model of Parkinson’s disease. PLoS One 9(6):e98886. doi: 10.1371/journal.pone.0098886 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zhang CW, Adeline HB, Chai BH, Hong ET, Ng CH, Lim KL (2016) Pharmacological or genetic activation of Hsp70 protects against loss of Parkin function. Neurodegener Dis 16(5–6):304–316. doi: 10.1159/000443668 CrossRefPubMedGoogle Scholar
  18. 18.
    Elefant F, Palter KB (1999) Tissue-specific expression of dominant negative mutant Drosophila HSC70 causes developmental defects and lethality. Mol Biol Cell 10(7):2101–2117CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Cremona O, De Camilli P (1997) Synaptic vesicle endocytosis. Curr Opin Neurobiol 7(3):323–330CrossRefPubMedGoogle Scholar
  20. 20.
    Newmyer SL, Schmid SL (2001) Dominant-interfering Hsc70 mutants disrupt multiple stages of the clathrin-coated vesicle cycle in vivo. J Cell Biol 152(3):607–620CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Rothnie A, Clarke AR, Kuzmic P, Cameron A, Smith CJ (2011) A sequential mechanism for clathrin cage disassembly by 70-kDa heat-shock cognate protein (Hsc70) and auxilin. Proc Natl Acad Sci U S A 108(17):6927–6932. doi: 10.1073/pnas.1018845108 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Jaattela M, Wissing D, Kokholm K, Kallunki T, Egeblad M (1998) Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO J 17(21):6124–6134. doi: 10.1093/emboj/17.21.6124 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Belay HT, Brown IR (2006) Cell death and expression of heat-shock protein Hsc70 in the hyperthermic rat brain. J Neurochem 97(Suppl 1):116–119. doi: 10.1111/j.1471-4159.2005.03591.x CrossRefPubMedGoogle Scholar
  24. 24.
    Gain P, Thuret G, Chiquet C, Dumollard JM, Mosnier JF, Campos L (2001) In situ immunohistochemical study of Bcl-2 and heat shock proteins in human corneal endothelial cells during corneal storage. Br J Ophthalmol 85(8):996–1000CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Bagchi M, Katar M, Maisel H (2002) Heat shock proteins of adult and embryonic human ocular lenses. J Cell Biochem 84(2):278–284CrossRefPubMedGoogle Scholar
  26. 26.
    Kim JH, Yu YS, Chung H, Heo JW, Seo JS (2003) Effect of the absence of heat shock protein 70.1 (hsp70.1) on retinal photic injury. Korean J Ophthalmol 17(1):7–13. doi: 10.3341/kjo.2003.17.1.7 CrossRefPubMedGoogle Scholar
  27. 27.
    Evans TG, Yamamoto Y, Jeffery WR, Krone PH (2005) Zebrafish Hsp70 is required for embryonic lens formation. Cell Stress Chaperones 10(1):66–78CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Blechinger SR, Evans TG, Tang PT, Kuwada JY, Warren JT Jr, Krone PH (2002) The heat-inducible zebrafish hsp70 gene is expressed during normal lens development under non-stress conditions. Mech Dev 112(1–2):213–215CrossRefPubMedGoogle Scholar
  29. 29.
    Kojima M, Hoshimaru M, Aoki T, Takahashi JB, Ohtsuka T, Asahi M, Matsuura N, Kikuchi H (1996) Expression of heat shock proteins in the developing rat retina. Neurosci Lett 205(3):215–217CrossRefPubMedGoogle Scholar
  30. 30.
    Bernstein SL, Liu AM, Hansen BC, Somiari RI (2000) Heat shock cognate-70 gene expression declines during normal aging of the primate retina. Invest Ophthalmol Vis Sci 41(10):2857–2862PubMedGoogle Scholar
  31. 31.
    Gorbatyuk MS, Knox T, LaVail MM, Gorbatyuk OS, Noorwez SM, Hauswirth WW, Lin JH, Muzyczka N, Lewin AS (2010) Restoration of visual function in P23H rhodopsin transgenic rats by gene delivery of BiP/Grp78. Proc Natl Acad Sci U S A 107(13):5961–5966. doi: 10.1073/pnas.0911991107
  32. 32.
    Athanasiou D, Kosmaoglou M, Kanuga N, Novoselov SS, Paton AW, Paton JC, Chapple JP, Cheetham ME (2012) BiP prevents rod opsin aggregation. Mol Biol Cell 23(18):3522–3531. doi: 10.1091/mbc.E12-02-0168
  33. 33.
    Ryoo HD, Domingos PM, Kang MJ, Steller H (2007) Unfolded protein response in a Drosophila model for retinal degeneration. EMBO J 26(1):242–252. doi: 10.1038/sj.emboj.7601477 CrossRefPubMedGoogle Scholar
  34. 34.
    Hagedorn EJ, Bayraktar JL, Kandachar VR, Bai T, Englert DM, Chang HC (2006) Drosophila melanogaster auxilin regulates the internalization of delta to control activity of the Notch signaling pathway. J Cell Biol 173(3):443–452. doi: 10.1083/jcb.200602054 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Chang HC, Newmyer SL, Hull MJ, Ebersold M, Schmid SL, Mellman I (2002) Hsc70 is required for endocytosis and clathrin function in Drosophila. J Cell Biol 159(3):477–487. doi: 10.1083/jcb.200205086 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Cagan RL, Ready DF (1989) Notch is required for successive cell decisions in the developing Drosophila retina. Genes Dev 3(8):1099–1112CrossRefPubMedGoogle Scholar
  37. 37.
    Cagan R (2009) Principles of Drosophila eye differentiation. Curr Top Dev Biol 89:115–135. doi: 10.1016/S0070-2153(09)89005-4 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kumar JP (2012) Building an ommatidium one cell at a time. Dev Dyn 241(1):136–149. doi: 10.1002/dvdy.23707 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Gehring W (1966) Cell heredity and changes of determination in cultures of imaginal discs in Drosophila melanogaster. J Embryol Exp Morphol 15(1):77–111PubMedGoogle Scholar
  40. 40.
    Ouweneel WJ (1970) Normal and abnormal determination in the imaginal discs of Drosophila, with special reference to the eye discs. Acta Embryol Exp (Palermo) 1:95–119Google Scholar
  41. 41.
    Ready DF, Hanson TE, Benzer S (1976) Development of the Drosophila retina, a neurocrystalline lattice. Dev Biol 53(2):217–240CrossRefPubMedGoogle Scholar
  42. 42.
    Tomlinson A (1988) Cellular interactions in the developing Drosophila eye. Development 104(2):183–193PubMedGoogle Scholar
  43. 43.
    Roignant JY, Treisman JE (2009) Pattern formation in the Drosophila eye disc. Int J Dev Biol 53(5–6):795–804. doi: 10.1387/ijdb.072483jr CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Tomlinson A, Ready DF (1987) Cell fate in the Drosophila ommatidium. Dev Biol 123(1):264–275CrossRefPubMedGoogle Scholar
  45. 45.
    Cagan RL, Ready DF (1989) The emergence of order in the Drosophila pupal retina. Dev Biol 136(2):346–362CrossRefPubMedGoogle Scholar
  46. 46.
    Wolff T, Ready DF (1991) The beginning of pattern formation in the Drosophila compound eye: the morphogenetic furrow and the second mitotic wave. Development 113(3):841–850PubMedGoogle Scholar
  47. 47.
    Wolff T, Ready DF (1991) Cell death in normal and rough eye mutants of Drosophila. Development 113(3):825–839PubMedGoogle Scholar
  48. 48.
    Miller DT, Cagan RL (1998) Local induction of patterning and programmed cell death in the developing Drosophila retina. Development 125(12):2327–2335PubMedGoogle Scholar
  49. 49.
    Larson DE, Johnson RI, Swat M, Cordero JB, Glazier JA, Cagan RL (2010) Computer simulation of cellular patterning within the Drosophila pupal eye. PLoS Comput Biol 6:e1000841. doi: 10.1371/journal.pcbi.1000841 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Freeman M (1996) Reiterative use of the EGF receptor triggers differentiation of all cell types in the Drosophila eye. Cell 87(4):651–660CrossRefPubMedGoogle Scholar
  51. 51.
    Song Z, Guan B, Bergman A, Nicholson DW, Thornberry NA, Peterson EP, Steller H (2000) Biochemical and genetic interactions between Drosophila caspases and the proapoptotic genes rpr, hid, and grim. Mol Cell Biol 20(8):2907–2914CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Li LB, Xu K, Bonini NM (2007) Suppression of polyglutamine toxicity by the yeast Sup35 prion domain in Drosophila. J Biol Chem 282(52):37694–37701. doi: 10.1074/jbc.M705211200 CrossRefPubMedGoogle Scholar
  53. 53.
    Warrick JM, Paulson HL, Gray-Board GL, Bui QT, Fischbeck KH, Pittman RN, Bonini NM (1998) Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila. Cell 93(6):939–949CrossRefPubMedGoogle Scholar
  54. 54.
    Wang SL, Hawkins CJ, Yoo SJ, Muller HA, Hay BA (1999) The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID. Cell 98(4):453–463CrossRefPubMedGoogle Scholar
  55. 55.
    Hay BA, Wolff T, Rubin GM (1994) Expression of baculovirus P35 prevents cell death in Drosophila. Development 120(8):2121–2129PubMedGoogle Scholar
  56. 56.
    Martin-Blanco E, Gampel A, Ring J, Virdee K, Kirov N, Tolkovsky AM, Martinez-Arias A (1998) Puckered encodes a phosphatase that mediates a feedback loop regulating JNK activity during dorsal closure in Drosophila. Genes Dev 12(4):557–570CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Adachi-Yamada T, Fujimura-Kamada K, Nishida Y, Matsumoto K (1999) Distortion of proximodistal information causes JNK-dependent apoptosis in Drosophila wing. Nature 400(6740):166–169. doi: 10.1038/22112 CrossRefPubMedGoogle Scholar
  58. 58.
    Arya R, Lakhotia SC (2006) A simple nail polish imprint technique for examination of external morphology of Drosophila eyes. Curr Sci 90(9):1179–1180Google Scholar
  59. 59.
    Lakhotia SC, Prasanth KV (2002) Tissue- and development-specific induction and turnover of hsp70 transcripts from loci 87A and 87C after heat shock and during recovery in Drosophila melanogaster. J Exp Biol 205(Pt 3):345–358PubMedGoogle Scholar
  60. 60.
    Warrick JM, Morabito LM, Bilen J, Gordesky-Gold B, Faust LZ, Paulson HL, Bonini NM (2005) Ataxin-3 suppresses polyglutamine neurodegeneration in Drosophila by a ubiquitin-associated mechanism. Mol Cell 18(1):37–48. doi: 10.1016/j.molcel.2005.02.030 CrossRefPubMedGoogle Scholar
  61. 61.
    Ray M, Lakhotia SC (2015) The commonly used eye-specific sev-GAL4 and GMR-GAL4 drivers in Drosophila melanogaster are expressed in tissues other than eyes also. J Genet 94(3):407–416CrossRefPubMedGoogle Scholar
  62. 62.
    Li WZ, Li SL, Zheng HY, Zhang SP, Xue L (2012) A broad expression profile of the GMR-GAL4 driver in Drosophila melanogaster. Genet Mol Res 11(3):1997–2002. doi: 10.4238/2012.August.6.4 CrossRefPubMedGoogle Scholar
  63. 63.
    Arikawa K, Hicks JL, Williams DS (1990) Identification of actin filaments in the rhabdomeral microvilli of Drosophila photoreceptors. J Cell Biol 110(6):1993–1998CrossRefPubMedGoogle Scholar
  64. 64.
    Kumar JP, Ready DF (1995) Rhodopsin plays an essential structural role in Drosophila photoreceptor development. Development 121(12):4359–4370PubMedGoogle Scholar
  65. 65.
    Bahri SM, Yang X, Chia W (1997) The Drosophila bifocal gene encodes a novel protein which colocalizes with actin and is necessary for photoreceptor morphogenesis. Mol Cell Biol 17(9):5521–5529CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Xiong B, Bellen HJ (2013) Rhodopsin homeostasis and retinal degeneration: lessons from the fly. Trends Neurosci 36(11):652–660. doi: 10.1016/j.tins.2013.08.003 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Komarova EY, Afanasyeva EA, Bulatova MM, Cheetham ME, Margulis BA, Guzhova IV (2004) Downstream caspases are novel targets for the antiapoptotic activity of the molecular chaperone hsp70. Cell Stress Chaperones 9(3):265–275CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Hohfeld J (1998) Regulation of the heat shock conjugate Hsc70 in the mammalian cell: the characterization of the anti-apoptotic protein BAG-1 provides novel insights. Biol Chem 379(3):269–274PubMedGoogle Scholar
  69. 69.
    Arya R, Mallik M, Lakhotia SC (2007) Heat shock genes—integrating cell survival and death. J Biosci 32(3):595–610CrossRefPubMedGoogle Scholar
  70. 70.
    Grzeschik NA, Knust E (2005) IrreC/rst-mediated cell sorting during Drosophila pupal eye development depends on proper localisation of DE-cadherin. Development 132(9):2035–2045. doi: 10.1242/dev.01800 CrossRefPubMedGoogle Scholar
  71. 71.
    Larson DE, Liberman Z, Cagan RL (2008) Cellular behavior in the developing Drosophila pupal retina. Mech Dev 125(3–4):223–232. doi: 10.1016/j.mod.2007.11.007 CrossRefPubMedGoogle Scholar
  72. 72.
    Tepass U, Harris KP (2007) Adherens junctions in Drosophila retinal morphogenesis. Trends Cell Biol 17(1):26–35. doi: 10.1016/j.tcb.2006.11.006 CrossRefPubMedGoogle Scholar
  73. 73.
    Myers KR, Casanova JE (2008) Regulation of actin cytoskeleton dynamics by Arf-family GTPases. Trends Cell Biol 18(4):184–192. doi: 10.1016/j.tcb.2008.02.002 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Riggs B, Rothwell W, Mische S, Hickson GR, Matheson J, Hays TS, Gould GW, Sullivan W (2003) Actin cytoskeleton remodeling during early Drosophila furrow formation requires recycling endosomal components nuclear-fallout and Rab11. J Cell Biol 163(1):143–154. doi: 10.1083/jcb.200305115 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Xiang W, Rensing L (1999) Changes in cell morphology and actin organization during heat shock in Dictyostelium discoideum: does HSP70 play a role in acquired thermotolerance? FEMS Microbiol Lett 178(1):95–107CrossRefPubMedGoogle Scholar
  76. 76.
    Warrick JM, Chan HY, Gray-Board GL, Chai Y, Paulson HL, Bonini NM (1999) Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat Genet 23(4):425–428. doi: 10.1038/70532 CrossRefPubMedGoogle Scholar
  77. 77.
    Mitra A, Chinchore Y, Kinser R, Dolph PJ Characterization of two dominant alleles of the major rhodopsin-encoding gene ninaE in Drosophila. Mol Vis 17:3224–3233Google Scholar
  78. 78.
    Chang HY, Ready DF (2000) Rescue of photoreceptor degeneration in rhodopsin-null Drosophila mutants by activated Rac1. Science 290(5498):1978–1980CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Genetics & Developmental Biology Laboratory, School of Biological Sciences & BiotechnologyIndian Institute of Advanced Research/IAR, Koba Institutional AreaGandhinagarIndia

Personalised recommendations