Molecular Neurobiology

, Volume 55, Issue 5, pp 4078–4089 | Cite as

Modulatory Role of Nurr1 Activation and Thrombin Inhibition in the Neuroprotective Effects of Dabigatran Etexilate in Rotenone-Induced Parkinson’s Disease in Rats

  • Esraa A. Kandil
  • Rabab H. Sayed
  • Lamiaa A. Ahmed
  • Mai A. Abd El Fattah
  • Bahia M. El-Sayeh
Article
  • 290 Downloads

Abstract

Recently, it has been shown that both decreased nuclear receptor-related 1 (Nurr1) expression and thrombin accumulation are involved in the degeneration of dopaminergic neurons in Parkinson’s disease (PD). The new anticoagulant dabigatran etexilate (DE) is a direct thrombin inhibitor that owns benzimidazole group, which has been proposed to activate Nurr1. In the present study, we examined the neuroprotective effects of DE in rotenone model of PD. Rotenone was injected subcutaneously at a dose of 1.5 mg/kg every other day for 21 days. An oral regimen of DE (15 mg/kg) was started after the 5th rotenone injection following the manifestations of PD. Treatment of PD rats with DE mitigated rotenone-induced neuronal degeneration and restored striatal dopamine level with motor recovery. As well, DE enhanced Nurr1 expression in substantia nigra along with increasing transcriptional activation of Nurr1-controlled genes namely tyrosine hydroxylase, vascular monoamine transporter, glial cell line-derived neurotrophic factor, and its receptor gene c-Ret, which are critical for development and maintenance of dopaminergic neurons. DE also suppressed thrombin accumulation in substantia nigra. Both effects probably contributed to repressing neurotoxic proinflammatory cytokines, which was manifested by decreased level of nuclear factor kappa beta and tumor necrosis factor alpha. In conclusion, the present results suggest that DE could possess significant neuroprotective and regenerative effects in a rotenone-induced PD animal model as consequence of Nurr1 activation and thrombin inhibition.

Keywords

Dabigatran etexilate Nurr1 Thrombin Neuroprotection Parkinson’s disease Rotenone 

Notes

Acknowledgements

The authors are grateful to Dr. Kawkab A. Ahmed, Professor of pathology, Faculty of Veterinary Medicine, Cairo University, for the kind help in histopathology.

Compliance with Ethical Standards

The study was approved by the Ethics Committee of Faculty of Pharmacy, Cairo University (Permit Number: 1832) and complies with the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH Publication No. 85-23, revised 2011).

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Mouradian MM (2002) Recent advances in the genetics and pathogenesis of Parkinson disease. Neurology 58:179–185CrossRefPubMedGoogle Scholar
  2. 2.
    Forno LS (1996) Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 55:259–272CrossRefPubMedGoogle Scholar
  3. 3.
    Pollanen MS, Dickson DW, Bergeron C (1993) Pathology and biology of the Lewy body. J Neuropathol Exp Neurol 52:183–191CrossRefPubMedGoogle Scholar
  4. 4.
    Goetz CG, Pal G (2014) Initial management of Parkinson’s disease. BMJ 349:g6258CrossRefPubMedGoogle Scholar
  5. 5.
    Dong J, Li S, Mo JL, Cai HB, Le WD (2016) Nurr1-based therapies for Parkinson’s disease. CNS Neurosci Ther 22:351–359. doi: 10.1111/cns.12536 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Jankovic J, Chen S, Le WD (2005) The role of Nurr1 in the development of dopaminergic neurons and Parkinson’s disease. Prog Neurobiol 77:128–138. doi: 10.1016/j.Pneurobio.2005.09.001 CrossRefPubMedGoogle Scholar
  7. 7.
    Zetterstrom RH, Solomin L, Jansson L, Hoffer BJ, Olson L, Perlmann T (1997) Dopamine neuron agenesis in Nurr1-deficient mice. Science 276:248–250CrossRefPubMedGoogle Scholar
  8. 8.
    Kadkhodaei B, Ito T, Joodmardi E, Mattsson B, Rouillard C, Carta M, Muramatsu S, Sumi-Ichinose C et al (2009) Nurr1 is required for maintenance of maturing and adult midbrain dopamine neurons. J Neurosci 29:15923–15932. doi: 10.1523/JNEUROSCI.3910-09.2009 CrossRefPubMedGoogle Scholar
  9. 9.
    Garcia-Yague AJ, Rada P, Rojo AI, Lastres-Becker I, Cuadrado A (2013) Nuclear import and export signals control the subcellular localization of Nurr1 protein in response to oxidative stress. J Biol Chem 288:5506–5517. doi: 10.1074/jbc.M112.439190 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Baloh RH, Enomoto H, Johnson EM Jr, Milbrandt J (2000) The GDNF family ligands and receptors—implications for neural development. Curr Opin Neurobiol 10:103–110CrossRefPubMedGoogle Scholar
  11. 11.
    Wallen AA, Castro DS, Zetterstrom RH, Karlen M, Olson L, Ericson J, Perlmann T (2001) Orphan nuclear receptor Nurr1 is essential for Ret expression in midbrain dopamine neurons and in the brain stem. Mol Cell Neurosci 18:649–663. doi: 10.1006/mcne.2001.1057 CrossRefGoogle Scholar
  12. 12.
    Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260:1130–1132CrossRefPubMedGoogle Scholar
  13. 13.
    Airaksinen MS, Saarma M (2002) The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 3:383–394. doi: 10.1038/nrn812 CrossRefPubMedGoogle Scholar
  14. 14.
    Tomac A, Lindqvist E, Lin LF, Ogren SO, Young D, Hoffer BJ, Olson L (1995) Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 373:335–339. doi: 10.1038/373335a0 CrossRefPubMedGoogle Scholar
  15. 15.
    Clarkson ED, Zawada WM, Freed CR (1997) GDNF improves survival and reduces apoptosis in human embryonic dopaminergic neurons in vitro. Cell Tissue Res 289:207–210CrossRefPubMedGoogle Scholar
  16. 16.
    Oh SM, Chang MY, Song JJ, Rhee YH, Joe EH, Lee HS, Yi SH, Lee SH (2015) Combined Nurr1 and Foxa2 roles in the therapy of Parkinson’s disease. EMBO Mol Med 7:510–525. doi: 10.15252/emmm.201404610 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Saijo K, Winner B, Carson CT, Collier JG, Boyer L, Rosenfeld MG, Gage FH, Glass CK (2009) A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 137:47–59. doi: 10.1016/j.Cell.2009.01.038 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kim CH, Han BS, Moon J, Kim DJ, Shin J, Rajan S, Nguyen QT, Sohn M et al (2015) Nuclear receptor Nurr1 agonists enhance its dual functions and improve behavioral deficits in an animal model of Parkinson’s disease. Proc Natl Acad Sci U S A 112:8756–8761. doi: 10.1073/pnas.1509742112 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Citron BA, Ameenuddin S, Uchida K, Suo WZ, SantaCruz K, Festoff BW (2016) Membrane lipid peroxidation in neurodegeneration: role of thrombin and proteinase-activated receptor-1. Brain Res 1643:10–17. doi: 10.1016/j.Brainres.2016.04.071 CrossRefPubMedGoogle Scholar
  20. 20.
    Krenzlin H, Lorenz V, Danckwardt S, Kempski O, Alessandri B (2016) The importance of thrombin in cerebral injury and disease. Int J Mol Sci 17:E84. doi: 10.3390/ijms17010084 CrossRefPubMedGoogle Scholar
  21. 21.
    Dihanich M, Kaser M, Reinhard E, Cunningham D, Monard D (1991) Prothrombin mRNA is expressed by cells of the nervous system. Neuron 6:575–581CrossRefPubMedGoogle Scholar
  22. 22.
    Festoff BW, Smirnova IV, Ma J, Citron BA (1996) Thrombin, its receptor and protease nexin I, its potent serpin, in the nervous system. Semin Thromb Hemost 22:267–271. doi: 10.1055/s-2007-999018. CrossRefPubMedGoogle Scholar
  23. 23.
    Turgeon VL, Houenou LJ (1997) The role of thrombin-like (serine) proteases in the development, plasticity and pathology of the nervous system. Brain Res Brain Res Rev 25:85–95CrossRefPubMedGoogle Scholar
  24. 24.
    Wang H, Reiser G (2003) Thrombin signaling in the brain: the role of protease-activated receptors. Biol Chem 384:193–202. doi: 10.1515/BC.2003.021 CrossRefPubMedGoogle Scholar
  25. 25.
    Suo Z, Citron BA, Festoff BW (2004) Thrombin: a potential proinflammatory mediator in neurotrauma and neurodegenerative disorders. Curr Drug Targets Inflamm Allergy 3:105–114CrossRefPubMedGoogle Scholar
  26. 26.
    Marangoni MN, Braun D, Situ A, Moyano AL, Kalinin S, Polak P, Givogri MI, Feinstein DL (2016) Differential effects on glial activation by a direct versus an indirect thrombin inhibitor. J Neuroimmunol 297:159–168. doi: 10.1016/j.Jneuroim.2016.05.018 CrossRefPubMedGoogle Scholar
  27. 27.
    Suo Z, Wu M, Citron BA, Gao C, Festoff BW (2003) Persistent protease-activated receptor 4 signaling mediates thrombin-induced microglial activation. J Biol Chem 278:31177–31183. doi: 10.1074/jbc.M302137200 CrossRefPubMedGoogle Scholar
  28. 28.
    Choi SH, Lee DY, Ryu JK, Kim J, Joe EH, Jin BK (2003) Thrombin induces nigral dopaminergic neurodegeneration in vivo by altering expression of death-related proteins. Neurobiol Dis 14:181–193CrossRefPubMedGoogle Scholar
  29. 29.
    Cannon JR, Hua Y, Richardson RJ, Xi G, Keep RF, Schallert T (2007) The effect of thrombin on a 6-hydroxydopamine model of Parkinson’s disease depends on timing. Behav Brain Res 183:161–168. doi: 10.1016/j.Bbr.2007.06.004 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ebrahimi S, Jaberi N, Avan A, Ryzhikov M, Keramati MR, Parizadeh MR, Hassanian SM (2017) Role of thrombin in the pathogenesis of central nervous system inflammatory diseases. J Cell Physiol 232:482–485. doi: 10.1002/jcp.25501 CrossRefPubMedGoogle Scholar
  31. 31.
    Suo Z, Wu M, Ameenuddin S, Anderson HE, Zoloty JE, Citron BA, Andrade-Gordon P, Festoff BW (2002) Participation of protease-activated receptor-1 in thrombin-induced microglial activation. J Neurochem 80:655–666CrossRefPubMedGoogle Scholar
  32. 32.
    Li X, Lee SO, Safe S (2012) Structure-dependent activation of NR4A2 (Nurr1) by 1,1-bis(3′-indolyl)-1-(aromatic)methane analogs in pancreatic cancer cells. Biochem Pharmacol 83:1445–1455. doi: 10.1016/j.Bcp.2012.02.021 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Smith GA, Rocha EM, Rooney T, Barneoud P, McLean JR, Beagan J, Osborn T, Coimbra M et al (2015) A Nurr1 agonist causes neuroprotection in a Parkinson’s disease lesion model primed with the toll-like receptor 3 dsRNA inflammatory stimulant poly(I:C). PLoS One 10:e0121072. doi: 10.1371/journal.Pone.0121072 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Eisert WG, Hauel N, Stangier J, Wienen W, Clemens A, Van RJ (2010) Dabigatran: an oral novel potent reversible nonpeptide inhibitor of thrombin. Arterioscler Thromb Vasc Biol 30:1885–1889. doi: 10.1161/ATVBAHA.110.203604 CrossRefPubMedGoogle Scholar
  35. 35.
    Verma AK (2010) Dabigatran etexilate: a new thrombin inhibitor. Med J Aust 192:407–412PubMedGoogle Scholar
  36. 36.
    Dittmeier M, Wassmuth K, Schuhmann MK, Kraft P, Kleinschnitz C, Fluri F (2016) Dabigatran etexilate reduces thrombin-induced inflammation and thrombus formation in experimental ischemic stroke. Curr Neurovasc Res 13:199–206CrossRefPubMedGoogle Scholar
  37. 37.
    Kandil EA, Abdelkader NF, El-Sayeh BM, Saleh S (2016) Imipramine and amitriptyline ameliorate the rotenone model of Parkinson’s disease in rats. Neuroscience 332:26–37. doi: 10.1016/j.Neuroscience.2016.06.040 CrossRefPubMedGoogle Scholar
  38. 38.
    Walsh RN, Cummins RA (1976) The open-field test: a critical review. Psychol Bull 83:482–504CrossRefPubMedGoogle Scholar
  39. 39.
    Jones BJ, Roberts DJ (1968) The quantiative measurement of motor inco-ordination in naive mice using an acelerating rotarod. J Pharm Pharmacol 20:302–304CrossRefPubMedGoogle Scholar
  40. 40.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  41. 41.
    Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Fenyk-Melody JE, Garrison AE, Brunnert SR, Weidner JR, Shen F, Shelton BA, Mudgett JS (1998) Experimental autoimmune encephalomyelitis is exacerbated in mice lacking the NOS2 gene. J Immunol 160:2940–2946PubMedGoogle Scholar
  43. 43.
    Huang R, Ke W, Liu Y, Wu D, Feng L, Jiang C, Pei Y (2010) Gene therapy using lactoferrin-modified nanoparticles in a rotenone-induced chronic Parkinson model. J Neurol Sci 290:123–130CrossRefPubMedGoogle Scholar
  44. 44.
    Hirsch EC, Hoglinger G, Rousselet E, Breidert T, Parain K, Feger J, Ruberg M, Prigent A, et al (2003) Animal models of Parkinson’s disease in rodents induced by toxins: an update. J Neural Transm Suppl 89–100.Google Scholar
  45. 45.
    Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3:1301–1306. doi: 10.1038/81834 CrossRefPubMedGoogle Scholar
  46. 46.
    Alam M, Scmidt WJ (2002) Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats. Behav Brain Res 136:317–324CrossRefPubMedGoogle Scholar
  47. 47.
    Jiang C, Wan X, He YI, Pan T, Jankovic J, Le W (2005) Age-dependent dopaminergic dysfunction in Nurr1 knockout mice. Exp Neurol 191:154–162CrossRefPubMedGoogle Scholar
  48. 48.
    Chu Y, Le W, Kompoliti K, Jankovic J, Mufson EJ, Kordower JH (2006) Nurr1 in Parkinson’s disease and related disorders. J Comp Neurol 494:495–514CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Le W, Pan T, Huang M, Xu P, Xie W, Zhu W, Zhang X, Deng H et al (2008) Decreased NURR1 gene expression in patients with Parkinson’s disease. J Neurol Sci 273:29–33. doi: 10.1016/j.Jns.2008.06.007 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Lin X, Parisiadou L, Sgobio C, Liu G, Yu J, Sun L, Shim H, Gu XL et al (2012) Conditional expression of Parkinson’s disease-related mutant alpha-synuclein in the midbrain dopaminergic neurons causes progressive neurodegeneration and degradation of transcription factor nuclear receptor related 1. J Neurosci 32:9248–9264. doi: 10.1523/JNEUROSCI.1731-12.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Jacobs FM, van Erp S, van der Linden AJ, von Oerthel L, Burbach JP, Smidt MP (2009) Pitx3 potentiates Nurr1 in dopamine neuron terminal differentiation through release of SMRT-mediated repression. Development 136:531–540. doi: 10.1242/dev.029769 CrossRefPubMedGoogle Scholar
  52. 52.
    Decressac M, Kadkhodaei B, Mattsson B, Laguna A, Perlmann T, Bjorklund A (2012) Alpha-synuclein-induced down-regulation of Nurr1 disrupts GDNF signaling in nigral dopamine neurons. Sci Transl Med 4:163ra156. doi: 10.1126/scitranslmed.3004676 CrossRefPubMedGoogle Scholar
  53. 53.
    Lee MA, Lee HS, Lee HS, Cho KG, Jin BK, Sohn S, Lee YS, Ichinose H et al (2002) Overexpression of midbrain-specific transcription factor Nurr1 modifies susceptibility of mouse neural stem cells to neurotoxins. Neurosci Lett 333:74–78CrossRefPubMedGoogle Scholar
  54. 54.
    Dubois C, Hengerer B, Mattes H (2006) Identification of a potent agonist of the orphan nuclear receptor Nurr1. ChemMedChem 1:955–958. doi: 10.1002/cmdc.200600078 CrossRefPubMedGoogle Scholar
  55. 55.
    Galleguillos D, Fuentealba JA, Gomez LM, Saver M, Gomez A, Nash K, Burger C, Gysling K et al (2010) Nurr1 regulates RET expression in dopamine neurons of adult rat midbrain. J Neurochem 114:1158–1167. doi: 10.1111/j.1471-4159.2010.06841.x PubMedGoogle Scholar
  56. 56.
    Zhao Y, Bruemmer D (2010) NR4A orphan nuclear receptors: transcriptional regulators of gene expression in metabolism and vascular biology. Arterioscler Thromb Vasc Biol 30:1535–1541. doi: 10.1161/ATVBAHA.109.191163 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Maguire-Zeiss KA, Federoff HJ (2010) Future directions for immune modulation in neurodegenerative disorders: focus on Parkinson’s disease. J Neural Transm 117:1019–1025. doi: 10.1007/s00702-010-0431-6 CrossRefPubMedGoogle Scholar
  58. 58.
    Tansey MG, Goldberg MS (2010) Neuroinflammation in Parkinson’s disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol Dis 37:510–518CrossRefPubMedGoogle Scholar
  59. 59.
    De Miranda BR, Popichak KA, Hammond SL, Jorgensen BA, Phillips AT, Safe S, Tjalkens RB (2015) The Nurr1 activator 1,1-Bis(3′-Indolyl)-1-(p-chlorophenyl)methane blocks inflammatory gene expression in BV-2 microglial cells by inhibiting nuclear factor kappaB. Mol Pharmacol 87:1021–1034. doi: 10.1124/mol.114.095398 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Buss H, Dorrie A, Schmitz ML, Frank R, Livingstone M, Resch K, Kracht M (2004) Phosphorylation of serine 468 by GSK-3beta negatively regulates basal p65 NF-kappaB activity. J Biol Chem 279:49571–49574. doi: 10.1074/jbc.C400442200 CrossRefPubMedGoogle Scholar
  61. 61.
    Tripathy D, Sanchez A, Yin X, Luo J, Martinez J, Grammas P (2013) Thrombin, a mediator of cerebrovascular inflammation in AD and hypoxia. Front Aging Neurosci 5:19. doi: 10.3389/fnagi.2013.00019 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Dugina TN, Kiseleva EV, Chistov IV, Umarova BA, Strukova SM (2002) Receptors of the PAR family as a link between blood coagulation and inflammation. Biochemistry (Mosc) 67:65–74CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Esraa A. Kandil
    • 1
  • Rabab H. Sayed
    • 1
  • Lamiaa A. Ahmed
    • 1
  • Mai A. Abd El Fattah
    • 1
  • Bahia M. El-Sayeh
    • 1
  1. 1.Department of Pharmacology and Toxicology, Faculty of PharmacyCairo UniversityCairoEgypt

Personalised recommendations