Advertisement

Molecular Neurobiology

, Volume 55, Issue 5, pp 4267–4279 | Cite as

Cyclosporine A-Mediated IL-6 Expression Promotes Neural Induction in Pluripotent Stem Cells

  • Ashwathnarayan Ashwini
  • Sushma S Naganur
  • Bhaskar Smitha
  • Preethi Sheshadri
  • Jyothi Prasanna
  • Anujith Kumar
Article

Abstract

Differentiation of pluripotent stem cells (PSCs) to neural lineages has gathered huge attention in both basic research and regenerative medicine. The major hurdle lies in the efficiency of differentiation and identification of small molecules that facilitate neurogenesis would partly circumvent this limitation. The small molecule Cyclosporine A (CsA), a commonly used immunosuppressive drug, has been shown to enhance in vivo neurogenesis. To extend the information to in vitro neurogenesis, we examined the effect of CsA on neural differentiation of PSCs. We found CsA to increase the expression of neural progenitor genes during early neural differentiation. Gene silencing approach revealed CsA-mediated neural induction to be dependent on blocking the Ca2+-activated phosphatase calcineurin (Cn) signaling. Similar observation with FK506, an independent inhibitor of Cn, further strengthened the necessity of blocking Cn for enhanced neurogenesis. Surprisingly, mechanistic insight revealed Cn-inhibition dependent upregulation of IL-6 protein to be necessary for CsA-mediated neurogenesis. Together, these findings provide a comprehensive understanding of the role of CsA in neurogenesis, thus suggesting a method for obtaining large numbers of neural progenitors from PSCs for possible transplantation.

Keywords

Neural differentiation miPSCs Cyclosporine A Calcineurin-NFAT pathway FK506 

Abbreviations

PSC

Pluripotent stem cells

iPSC

Induced pluripotent stem cells

miPSC

Mouse induced pluripotent stem cells

CsA

Cyclosporine A

Cn

Calcineurin

NFAT

Nuclear factor of activated T cells

ESC

Embryonic stem cells

iMEF

Inactivated mouse embryonic fibroblasts

LIF

Leukemia inhibitory factor

EB

Embryoid body

Notes

Acknowledgements

We would like to thank AK lab members for critical review of all the data. We thank Prof. Catherine Verfaillie for the generous gift of Oct4-GFP iPSCs. This work was supported by grants from CSIR [no. 27(0294)/13/EMRII] and intramural funding from SORM, Manipal University.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12035_2017_633_Fig1_ESM.gif (303 kb)
Supplementary Fig. 1

Pluripotency and lineage expression analysis of ESCs treated with CsA. a Semi –quantitative PCR analysis of Src in mESCs in presence and absence of CsA b Semi-quantitative PCR showing the expression of pluripotency genes in mESCs in absence and presence of different concentrations of CsA. c Realtime PCR for lineage specific markers in mESCs treated with RA and CsA and withdrawal of LIF. d qPCR results showing lineage specific marker expression in EBs derived from mESCs with Day 3 to Day 14 CsA treatment. (GIF 302 kb).

12035_2017_633_MOESM1_ESM.tif (2.1 mb)
High Resolution Image (TIFF 2142 kb).
12035_2017_633_Fig2_ESM.gif (29 kb)
Supplementary Fig. 2

CsA resuces OCT4-GFP expression and maintains pluripotency of miPSCs. a Flowcytometric analysis and b quantification of percent bright GFP positive miPSCs expressing OCT4-GFP. Single asterisk indicates p < 0.05 vs cells cultured in presence of LIF. (GIF 29 kb).

12035_2017_633_MOESM2_ESM.tif (3 mb)
High Resolution Image (TIFF 3074 kb).
12035_2017_633_Fig3_ESM.gif (83 kb)
Supplementary Fig. 3

Differentiation of mESCs using N2B27 and RA demarcates early and late differentiation events. a Gene expression analysis and b immunofluorescence of of neural progenitor genes in the early differentiation event. c Transcript analysis and immunofluorescence analysis (d) of neurons derived from mPSCs during late differentiation Data is representative of three independent experiments and presented as mean ± SEM. Scale bar represents 100 μm. (GIF 82 kb).

12035_2017_633_MOESM3_ESM.tif (6.7 mb)
High Resolution Image (TIFF 6823 kb).
12035_2017_633_Fig4_ESM.gif (7 kb)
Supplementary Fig. 4

CsA inhibits nuclear translocation of NFATC3. a Immunoblot depiciting NFATC3 levels in the nuclear extracts of neurons differentiated from mESCs with and without CsA; purity of nuclear extracts assessed by presence of Nulceolin and absence of ß-actin. (GIF 6 kb).

12035_2017_633_MOESM4_ESM.tif (874 kb)
High Resolution Image (TIFF 873 kb).
12035_2017_633_Fig5_ESM.gif (13 kb)
Supplementary Fig. 5

KnockdownPpp3r1 enhances neural gene expression in mESCs. a Gene expression analysis of Ppp3r1 in Scrambled and Ppp3r1 shRNA in mESCs. b Neural gene expression of mESC scramble and Ppp3r1knockdown cells. Data is representative of three independent experiments and presented as mean ± SEM. *p ≤ 0.05 vs scrambled control. (GIF 12 kb).

12035_2017_633_MOESM5_ESM.tif (1.4 mb)
High Resolution Image (TIFF 1482 kb).
12035_2017_633_Fig6_ESM.gif (29 kb)
Supplementary Fig. 6

Blocking of Cn-NFAT pathway is essential for IL-6 expression in iPSCs. a Transcript analysis of miPSCs derived embryoid bodies in the presence and absence of CsA for IL-6 expression. b mRNA expression of interleukin genes in miPSCs transduced with PPP3r1 shRNA and scrambled control and differentiated to neural lineage. Data is representative of three independent experiments and presented as mean ± SEM. *p < 0.05, **p < 0.01 vs scrambled control. c qPCR analysis of interleukin genes in miPSCs differentiated to neural lineage in the presence and absence of FK506. (GIF 28 kb).

12035_2017_633_MOESM6_ESM.tif (3.8 mb)
High Resolution Image (TIFF 3925 kb).
12035_2017_633_MOESM7_ESM.tif (18 kb)
Supplementary Table 1 (TIFF 18 kb).
12035_2017_633_MOESM8_ESM.tif (13 kb)
Supplementary Table 2 (TIFF 12 kb).

References

  1. 1.
    Stewart R, Stojkovic M, Lako M (2006) Mechanisms of self-renewal in human embryonic stem cells. Eur J Cancer 42:1257–1272. doi: 10.1016/j.ejca.2006.01.033 CrossRefPubMedGoogle Scholar
  2. 2.
    Avior Y, Sagi I, Benvenisty N (2016) Pluripotent stem cells in disease modelling and drug discovery. Nat Rev Mol Cell Biol 17:170–182. doi: 10.1038/nrm.2015.27 CrossRefPubMedGoogle Scholar
  3. 3.
    Chuang J-H (2015) Neural differentiation from embryonic stem cells in vitro: an overview of the signaling pathways. World Journal of Stem Cells 7:437. doi: 10.4252/wjsc.v7.i2.437 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Elkabetz Y, Panagiotakos G, Al Shamy G et al (2008) Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes Dev 22:152–165. doi: 10.1101/gad.1616208 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Engberg N, Kahn M, Petersen DR et al (2010) Retinoic acid synthesis promotes development of neural progenitors from mouse embryonic stem cells by suppressing endogenous, Wnt-dependent nodal signaling. Stem Cells 28:1498–1509. doi: 10.1002/stem.479 CrossRefPubMedGoogle Scholar
  6. 6.
    Dhara SK, Stice SL (2008) Neural differentiation of human embryonic stem cells. J Cell Biochem 105:633–640. doi: 10.1002/jcb.21891 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Gorba T, Allsopp TE (2003) Pharmacological potential of embryonic stem cells. Pharmacology Research 47:269–278CrossRefGoogle Scholar
  8. 8.
    Cezar GG (2007) Can human embryonic stem cells contribute to the discovery of safer and more effective drugs? Curr Opin Chem Biol 11:405–409. doi: 10.1016/j.cbpa.2007.05.033 CrossRefPubMedGoogle Scholar
  9. 9.
    Chambers SM, Qi Y, Mica Y et al (2012) Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors. Nat Biotechnol 30:715–720. doi: 10.1038/nbt.2249 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hu B-Y, Zhang S-C (2009) Differentiation of spinal motor neurons from pluripotent human stem cells. Nat Protoc 4:1295–1304. doi: 10.1038/nprot.2009.127 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Öström M, Loffler KA, Edfalk S et al (2008) Retinoic acid promotes the generation of pancreatic endocrine progenitor cells and their further differentiation into β-cells. PLoS One 3:e2841. doi: 10.1371/journal.pone.0002841 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Smith JR, Vallier L, Lupo G et al (2008) Inhibition of activin/nodal signaling promotes specification of human embryonic stem cells into neuroectoderm. Dev Biol 313:107–117. doi: 10.1016/j.ydbio.2007.10.003 CrossRefPubMedGoogle Scholar
  13. 13.
    Zhou J, Su P, Li D et al (2010) High-efficiency induction of neural conversion in human ESCs and human induced pluripotent stem cells with a single chemical inhibitor of transforming growth factor Beta superfamily receptors. Stem Cells 28:1741–1750. doi: 10.1002/stem.504 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Osakada F, Ikeda H, Mandai M et al (2008) Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nat Biotechnol 26:215–224. doi: 10.1038/nbt1384 CrossRefPubMedGoogle Scholar
  15. 15.
    Surmacz B, Fox H, Gutteridge A et al (2012) Directing differentiation of human embryonic stem cells toward anterior neural ectoderm using small molecules. Stem Cells 30:1875–1884. doi: 10.1002/stem.1166 CrossRefPubMedGoogle Scholar
  16. 16.
    Li X, Zhu L, Yang A et al (2011) Calcineurin-NFAT signaling critically regulates early lineage specification in mouse embryonic stem cells and embryos. Cell Stem Cell 8:46–58. doi: 10.1016/j.stem.2010.11.027 CrossRefPubMedGoogle Scholar
  17. 17.
    Sachinidis A, Schwengberg S, Hippler-Altenburg R et al (2006) Identification of small signalling molecules promoting cardiac-specific differentiation of mouse embryonic stem cells. Cell Physiol Biochem 18:303–314. doi: 10.1159/000097608 CrossRefPubMedGoogle Scholar
  18. 18.
    Wang H (1999) Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science 284:339–343. doi: 10.1126/science.284.5412.339 CrossRefPubMedGoogle Scholar
  19. 19.
    Oh-hora M, Rao A (2009) The calcium/NFAT pathway: role in development and function of regulatory T cells. Microbes Infect 11:612–619. doi: 10.1016/j.micinf.2009.04.008 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sachewsky N, Hunt J, Cooke MJ et al (2014) Cyclosporin A enhances neural precursor cell survival in mice through a calcineurin-independent pathway. Dis Model Mech 7:953–961. doi: 10.1242/dmm.014480 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hunt J, Cheng A, Hoyles A et al (2010) Cyclosporin A has direct effects on adult neural precursor cells. J Neurosci 30:2888–2896. doi: 10.1523/JNEUROSCI.5991-09.2010 CrossRefPubMedGoogle Scholar
  22. 22.
    Gómez-Sintes R, Lucas JJ (2010) NFAT/Fas signaling mediates the neuronal apoptosis and motor side effects of GSK-3 inhibition in a mouse model of lithium therapy. J Clin Investig 120:2432–2445. doi: 10.1172/JCI37873 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Declercq J, Sheshadri P, Verfaillie CM, Kumar A (2013) Zic3 enhances the generation of mouse induced pluripotent stem cells. Stem Cells Dev 22:2017–2025. doi: 10.1089/scd.2012.0651 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Lu J, Tan L, Li P et al (2009) All-trans retinoic acid promotes neural lineage entry by pluripotent embryonic stem cells via multiple pathways. BMC Cell Biol 10:57. doi: 10.1186/1471-2121-10-57 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Wiederschain D, Susan W, Chen L et al (2009) Single-vector inducible lentiviral RNAi system for oncology target validation. Cell Cycle 8:498–504. doi: 10.4161/cc.8.3.7701 CrossRefPubMedGoogle Scholar
  26. 26.
    Khodeer S, Era T (2017) Identifying the biphasic role of calcineurin/NFAT signaling enables replacement of Sox2 in somatic cell reprogramming: calcineurin/NFAT signaling in reprogramming. Stem Cells. doi: 10.1002/stem.2572
  27. 27.
    Lo Nigro A, de Jaime-Soguero A, Khoueiry R et al (2017) PDGFRα+ cells in embryonic stem cell cultures represent the in vitro equivalent of the pre-implantation primitive endoderm precursors. Stem Cell Reports 8:318–333. doi: 10.1016/j.stemcr.2016.12.010 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Loh KM, Lim B (2011) A precarious balance: pluripotency factors as lineage specifiers. Cell Stem Cell 8:363–369. doi: 10.1016/j.stem.2011.03.013 CrossRefPubMedGoogle Scholar
  29. 29.
    Martínez-Martínez S, Redondo JM (2004) Inhibitors of the calcineurin/NFAT pathway. Curr Med Chem 11:997–1007CrossRefPubMedGoogle Scholar
  30. 30.
    Tanaka H, Kuroda A, Marusawa H et al (1987) Structure of FK506, a novel immunosuppressant isolated from Streptomyces. J Am Chem Soc 109:5031–5033. doi: 10.1021/ja00250a050 CrossRefGoogle Scholar
  31. 31.
    García JEL, Rodríguez FM, López AJ et al (1998) Effect of cyclosporin A on inflammatory cytokine production by human alveolar macrophages. Respir Med 92:722–728. doi: 10.1016/S0954-6111(98)90002-6 CrossRefGoogle Scholar
  32. 32.
    Borsini A, Zunszain PA, Thuret S, Pariante CM (2015) The role of inflammatory cytokines as key modulators of neurogenesis. Trends Neurosci 38:145–157. doi: 10.1016/j.tins.2014.12.006 CrossRefPubMedGoogle Scholar
  33. 33.
    Van Wagoner NJ, Oh JW, Repovic P, Benveniste EN (1999) Interleukin-6 (IL-6) production by astrocytes: autocrine regulation by IL-6 and the soluble IL-6 receptor. J Neurosci 19:5236–5244CrossRefPubMedGoogle Scholar
  34. 34.
    Erta M, Quintana A, Hidalgo J (2012) Interleukin-6, a major cytokine in the central nervous system. Int J Biol Sci 8:1254–1266. doi: 10.7150/ijbs.4679 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Powles RL, Clink HM, Spence D et al (1980) Cyclosporin A to prevent graft-versus-host disease in man after allogeneic bone-marrow transplantation. Lancet 315:327–329. doi: 10.1016/S0140-6736(80)90881-8 CrossRefGoogle Scholar
  36. 36.
    Solomon SR, Nakamura R, Read EJ et al (2003) Cyclosporine is required to prevent severe acute GVHD following T-cell-depleted peripheral blood stem cell transplantation. Bone Marrow Transplant 31:783–788. doi: 10.1038/sj.bmt.1703928 CrossRefPubMedGoogle Scholar
  37. 37.
    Altman RD, Schiff M, Kopp EJ (1999) Cyclosporine A in rheumatoid arthritis: randomized, placebo controlled dose finding study. J Rheumatol 26:2102–2109PubMedGoogle Scholar
  38. 38.
    Ellis CN, Fradin MS, Messana JM et al (1991) Cyclosporine for plaque-type psoriasis: results of a multidose, double-blind trial. N Engl J Med 324:277–284. doi: 10.1056/NEJM199101313240501 CrossRefPubMedGoogle Scholar
  39. 39.
    Ptachcinski RJ, Venkataramanan R, Burckart GJ (1986) Clinical Pharmacokinetics of Cyclosporin: Clinical Pharmacokinetics 11:107–132. doi: 10.2165/00003088-198611020-00002 CrossRefPubMedGoogle Scholar
  40. 40.
    Fujiwara M, Yan P, Otsuji TG et al (2011) Induction and enhancement of cardiac cell differentiation from mouse and human induced pluripotent stem cells with Cyclosporin-A. PLoS One 6:e16734. doi: 10.1371/journal.pone.0016734 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Sun M, Liao B, Tao Y et al (2016) Calcineurin-NFAT signaling controls somatic cell reprogramming in a stage-dependent manner: calcineurin-NFAT signaling in reprogramming. J Cell Physiol 231:1151–1162. doi: 10.1002/jcp.25212 CrossRefPubMedGoogle Scholar
  42. 42.
    Sato N, Meijer L, Skaltsounis L et al (2004) Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 10:55–63. doi: 10.1038/nm979 CrossRefPubMedGoogle Scholar
  43. 43.
    Qyang Y, Martin-Puig S, Chiravuri M et al (2007) The renewal and differentiation of Isl1+ cardiovascular progenitors are controlled by a Wnt/β-catenin pathway. Cell Stem Cell 1:165–179. doi: 10.1016/j.stem.2007.05.018 CrossRefPubMedGoogle Scholar
  44. 44.
    Tarafdar A, Dobbin E, Corrigan P et al (2013) Canonical Wnt signaling promotes early hematopoietic progenitor formation and erythroid specification during embryonic stem cell differentiation. PLoS One 8:e81030. doi: 10.1371/journal.pone.0081030 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Compagnucci C, Nizzardo M, Corti S et al (2014) In vitro neurogenesis: development and functional implications of iPSC technology. Cell Mol Life Sci 71:1623–1639. doi: 10.1007/s00018-013-1511-1 CrossRefPubMedGoogle Scholar
  46. 46.
    Cho A, Tang Y, Davila J et al (2014) Calcineurin signaling regulates neural induction through antagonizing the BMP pathway. Neuron 82:109–124. doi: 10.1016/j.neuron.2014.02.015 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Jacobs S, Lie DC, DeCicco KL et al (2006) Retinoic acid is required early during adult neurogenesis in the dentate gyrus. Proc Natl Acad Sci 103:3902–3907. doi: 10.1073/pnas.0511294103 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Janesick A, Wu SC, Blumberg B (2015) Retinoic acid signaling and neuronal differentiation. Cell Mol Life Sci 72:1559–1576. doi: 10.1007/s00018-014-1815-9 CrossRefPubMedGoogle Scholar
  49. 49.
    Chow A, Morshead CM (2016) Cyclosporin A enhances neurogenesis in the dentate gyrus of the hippocampus. Stem Cell Res 16:79–87. doi: 10.1016/j.scr.2015.12.007 CrossRefPubMedGoogle Scholar
  50. 50.
    Vilar M, Mira H (2016) Regulation of neurogenesis by neurotrophins during adulthood: expected and unexpected roles. Front Neurosci. doi: 10.3389/fnins.2016.00026
  51. 51.
    Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132:645–660. doi: 10.1016/j.cell.2008.01.033 CrossRefPubMedGoogle Scholar
  52. 52.
    Satoh T, Nakamura S, Taga T et al (1988) Induction of neuronal differentiation in PC12 cells by B-cell stimulatory factor 2/interleukin 6. Mol Cell Biol 8:3546–3549CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    März P, Herget T, Lang E et al (1997) Activation of gp130 by IL-6/soluble IL-6 receptor induces neuronal differentiation. Eur J Neurosci 9:2765–2773CrossRefPubMedGoogle Scholar
  54. 54.
    Schafer K-H, Mestres P, Marz P, Rose-John S (1999) The IL-6/sIL-6R fusion protein hyper-IL-6 promotes neurite outgrowth and neuron survival in cultured enteric neurons. J Interf Cytokine Res 19:527–532. doi: 10.1089/107999099313974 CrossRefGoogle Scholar
  55. 55.
    Kahn MA, de Vellis J (1994) Regulation of an oligodendrocyte progenitor cell line by the interleukin-6 family of cytokines. Glia 12:87–98. doi: 10.1002/glia.440120202 CrossRefPubMedGoogle Scholar
  56. 56.
    Nakanishi M, Niidome T, Matsuda S et al (2007) Microglia-derived interleukin-6 and leukemia inhibitory factor promote astrocytic differentiation of neural stem/progenitor cells: microglia and NSPC differentiation. Eur J Neurosci 25:649–658. doi: 10.1111/j.1460-9568.2007.05309.x CrossRefPubMedGoogle Scholar
  57. 57.
    Maeda K, Mehta H, Drevets DA, Coggeshall KM (2010) IL-6 increases B-cell IgG production in a feed-forward proinflammatory mechanism to skew hematopoiesis and elevate myeloid production. Blood 115:4699–4706. doi: 10.1182/blood-2009-07-230631 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Kishimoto T, Akira S, Narazaki M, Taga T (1995) Interleukin-6 family of cytokines and gp130. Blood 86:1243–1254PubMedGoogle Scholar
  59. 59.
    Murayama K, Sawamura M, Murakami H et al (1994) FK506 and cyclosporin A enhance IL-6 production in monocytes: a single-cell assay. Mediat Inflamm 3:375–380. doi: 10.1155/S0962935194000529 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of Regenerative MedicineManipal UniversityBangaloreIndia

Personalised recommendations