Molecular Neurobiology

, Volume 55, Issue 5, pp 4068–4077 | Cite as

A Possible Anti-Inflammatory Effect of Proline in the Brain Cortex and Cerebellum of Rats

  • Vivian Strassburger Andrade
  • Denise Bertin Rojas
  • Rodrigo Binkowski de Andrade
  • Tomas Duk Hwa Kim
  • Adriana Fernanda Vizuete
  • Ângela Zanatta
  • Moacir Wajner
  • Carlos-Alberto Saraiva Gonçalves
  • Clovis Milton Duval Wannmacher


Although many studies show the toxic effects of proline, recently it has been reported some anti-inflammatory effect of this amino acid. Our principal objective was to investigate the effects of proline on the alterations caused by LPS (lipopolysaccharide) administration in the cerebral cortex and cerebellum of young Wistar rats. The animals were divided into four groups: control (0.85% saline); proline, (12.8 μmol of proline/g body weight from day 7 to 13; 14.6 μmol of proline/g body weight from day 14 to 17 and 16.4 μmol of proline/g body weight from day 18 to 21); LPS (1 mg/g body weight); LPS plus proline. The animals were killed at 22 days of age, 12 h after the last injection, by decapitation without anesthesia. The brain cortex and cerebellum were separated for chemical determinations. The effects of proline and LPS in the cerebral cortex and cerebellum on the expression of S100B and GFAP, oxidative stress parameters, enzymes of phosphoryl transfer network activity, and mitochondrial respiration chain complexes were investigated. Two-way ANOVA showed that the administration of proline did not alter the analyzed parameter in cerebral cortex and cerebellum. On the other hand, LPS administration caused a change in these parameters. Besides, the co-administration of proline and LPS showed the ability of Pro in preventing the effects of LPS. These results indicated that LPS induces inflammation, oxidative stress, and alters energy parameters in cerebral cortex and cerebellum of the rats. Moreover, co-administration of Pro was able to prevent these harmful effects of LPS.


Lipopolysaccharide Oxidative stress Proline Phosphoryl transfer network Hyperprolinemia 



This work was supported in part by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação de Amparo à Pesquisa do Rio Grande do Sul (FAPERGS, RS-Brazil).


  1. 1.
    Hu CA, Khalil S, Zhaorigetu S, Liu Z, Tyler M, Wan G, Valle D (2008) Human Deltal-pyrroline-5-carboxylate synthase: function and regulation. Amino Acids 35:665–672CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kaul S, Sharma SS, Mehta IK (2008) Free radical scavenging potential of L-proline: evidence from in vitro assays. Amino Acids 34:315–320CrossRefPubMedGoogle Scholar
  3. 3.
    Adams E (1970) Metabolism of proline and hydroxyproline. Int Rev Connect Tissue Res 5:1–91CrossRefPubMedGoogle Scholar
  4. 4.
    Phang JM (1985) The regulatory functions of proline and pyrroline-5-carboxylic acid. Curr Top Cell Regul 25:91–132CrossRefPubMedGoogle Scholar
  5. 5.
    Phang JM, Hu CA, Valle D (2001) Disorders of proline and hydroxyproline metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp. 1821–1838Google Scholar
  6. 6.
    Mitsubuchi H, Nakamura K, Matsumoto S, Endo F (2008) Inborn errors of proline metabolism. J Nutr 138:2016–2020CrossRefGoogle Scholar
  7. 7.
    Li H, Jiang J, Zhang Y, Wu P, Zhao J, Duan X, Zhou X, Feng L (2016) The metabolities of glutamine prevent hydroxyl radical-induced apoptosis through inhibiting mitochondria and calcium íon involved in fish erytrocytes. Free Rad Biol Med 92:96–140CrossRefGoogle Scholar
  8. 8.
    Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658CrossRefPubMedGoogle Scholar
  9. 9.
    Halliwell B, Gutteridge JMC (2006) Measurement of reactive species. In: Halliwell B, Gutteridge JMC (eds) Free radicals in biology and medicine, 4th edn. Clarendon Press, Oxford, p. 245Google Scholar
  10. 10.
    Michiels C (2004) Physiological and pathological responses to hypoxia. Am J Pathol 164(6):1875–1882CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Roberts RA, Laskin DL, Smith CV, Robertson FM, Allen EM, Doorn JA et al (2009) Nitrative and oxidative stress in toxicology and disease. Toxicol Sci 112:4–16CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Varga ZV, Giricz Z, Liaudet L, Haskó G, Ferdinandy P, Pacher P (2015) Interplay of oxidative, nitrosative/nitrative stress, inflammation, cell death and autophagy in diabetic cardiomyopathy. Biochim Biophys Acta 1852(2):232–242CrossRefPubMedGoogle Scholar
  13. 13.
    Lu Y, Wang X, Cederbaum AI (2005) Lipopolysaccharide-induced liver injury in rats treated with the CYP2E1 inducer pyrazole. Am J Physiol Gastrointest Liver Physiol 289:G308–G319CrossRefPubMedGoogle Scholar
  14. 14.
    Zhao G, Yu R, Deng J, Zhao Q, Li Y, Joo M et al (2013) Pivotal role of reactive oxygen species in differential regulation of lipopolysaccharide-induced prostaglandins production in macrophages. Mol Pharmacol 83:167–178CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Bykov I, Ylipaasto P, Erola L, Lindros KO (2003) Phagocytosis and LPS-stimulated production of cytokines and prostaglandin E2 is different in Kupffer cells isolated from the periportal or perivenous liver region. Scand J Gastroenterol 38:1256–1261CrossRefPubMedGoogle Scholar
  16. 16.
    Su GL (2002) Lipopolysaccharides in liver injury: molecular mechanisms of kupffer cells activation. Am J Physiol Gastrointest Liver Physiol 283:G256–G267CrossRefPubMedGoogle Scholar
  17. 17.
    Cosqrove BD, King BM, Hasan MA, Alexopoulos LG, Farazi PA, Hendriks BS et al (2009) Synergistic drug-cytokine induction of hepatocellular death as an in vitro approach for the study of inflammation-associated idiosyncratic drug hepatotoxicity. Toxicol Appl Pharmacol 237:317–330CrossRefGoogle Scholar
  18. 18.
    Lacour S, Antonios D, Gautier J-C, Pallardy M (2009) Acetaminophen and lipopolysaccharide act in synergy for the production of pro-inflammatory cytokines in murine RAW264.7 macrophages. J Immunotoxicol 6:84–93CrossRefPubMedGoogle Scholar
  19. 19.
    Bian K, Murad F (2001) Diversity of endotoxin-induced nitrotyrosine formation in macrophage-endothelium-rich organs. Free Radic Biol Med 31:421–429CrossRefPubMedGoogle Scholar
  20. 20.
    Raza H, John A, Shafarin J (2014) NAC attenuates LPS-induced toxicity in aspirin-sensitized mouse macrophages via suppression of oxidative stress and mitochondrial dysfunction. PLoS One 9:e103379CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Krishnan N, Dickman MB, Becker DF (2008) Proline modulates the intracellular redox environment and protects mammalian cells against oxidative stress. Free Radic Biol Med 44:671–681CrossRefPubMedGoogle Scholar
  22. 22.
    Moreira JC, Wannmacher CM, Costa SM, Wajner M (1989) Effect of proline administration on rat behavior in aversive and nonaversive tasks. Pharmacol Biochem Behav 32:885–890CrossRefPubMedGoogle Scholar
  23. 23.
    Leite MC, Galland F, Brolese G, Guerra MC, Bortolotto JW, Freitas R, Almeida LM, Gottfried C et al (2008) A simple, sensitive and widely applicable ELISA for S100B: Methodological features of the measurement of this glial protein. J Neurosci Methods 169:93–99CrossRefPubMedGoogle Scholar
  24. 24.
    Tramontina F, Leite MC, Cereser K, de Souza DF, Tramontina AC, Nardin P, Andreazza AC, Gottfried C et al (2007) Immunoassay for glial fibrillary acidic protein: antigen recognition is affected by its phosphorylation state. J Neurosci Methods 162:282–286CrossRefPubMedGoogle Scholar
  25. 25.
    Kehrer JP (2000) The Haber-Weiss reaction and mechanisms of toxicity. Toxicology 149:43–50CrossRefPubMedGoogle Scholar
  26. 26.
    Aksenov MY, Markesbery WR (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302:41–145CrossRefGoogle Scholar
  27. 27.
    Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126CrossRefPubMedGoogle Scholar
  28. 28.
    Marklund SL (1985) Pyrogallol autoxidation. In: Greenwald RA (ed) Handbook of methods for oxygen radical research. CRC Press Inc, Boca Raton 1985: 243–7Google Scholar
  29. 29.
    Wilson JE (1989) Prep. Biochem 19:13–21Google Scholar
  30. 30.
    Hughes BP (1962) A method for the estimation of serum creatine kinase and its use in comparing creatine kinase and aldolase activity in normal and pathological sera. Clin Chim Acta 7:597–603CrossRefPubMedGoogle Scholar
  31. 31.
    Dzeja PP, Vitkevicius KT, Redfied MM, Burnett JC, Terzic A (1999) Adenylate kinase-catalyzed phosphotransfer in the myo-cardium: increased contribution in heart failure. Circ Res 84:1137–1143CrossRefPubMedGoogle Scholar
  32. 32.
    Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421CrossRefPubMedGoogle Scholar
  33. 33.
    Rustin P, Chretien D, Bourgeon T et al (1994) Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta 228:35–51CrossRefPubMedGoogle Scholar
  34. 34.
    Sorensen RG, Mahler HR (1982) Localization of endogenous ATPases at the nerve terminal. J Bioenerg Biomembr 14:527–547CrossRefPubMedGoogle Scholar
  35. 35.
    Hauss-Wegrzyniak B, Lukovic L, Bigaud M, Stoeckel ME (1998) Brain inflammatory response induced by intracerebroventricular infusion of lipopolysaccharide: an immunohistochemical study. Brain Res 794:211–224CrossRefPubMedGoogle Scholar
  36. 36.
    Farina C, Aloisi F, Meinl E (2007) Astrocytes are active players in cerebral innate immunity. Trends Immunol 28:138–145CrossRefPubMedGoogle Scholar
  37. 37.
    Rothermundt M, Peters M, Prehn JH, Arolt V (2003) S100B in brain damage and neurodegeneration. Microsc Res Tech 60:614–632CrossRefPubMedGoogle Scholar
  38. 38.
    Sen J, Belli A (2007) S100B in neuropathologic states: the CRP of the brain? J Neurosci Res 85:1373–1380CrossRefPubMedGoogle Scholar
  39. 39.
    Eng LF, Ghirnikar RS, Lee YL (2000) Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem Res 25:1439–1451CrossRefPubMedGoogle Scholar
  40. 40.
    Vergara D, Martignago R, Bonsegna S, De Nuccio F, Santino A, Nicolardi G, Maffia M (2010) IFN-beta reverses the lipopolysaccharide-induced proteome modifications in treated astrocytes. J Neuroimmunol 221:115–120CrossRefPubMedGoogle Scholar
  41. 41.
    Brahmachari S, Fung YK, Pahan K (2006) Induction of glial fibrillary acidic protein expression in astrocytes by nitric oxide. J Neurosci 26:4930–4939CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Leite MC, Galland F, de Souza DF, Guerra MC, Bobermin L, Biasibetti R, Gottfried C, Goncalves CA (2009) Gap junction inhibitors modulate S100B secretion in astrocyte cultures and acute hippocampal slices. J Neurosci Res 87(11):2439–2446CrossRefPubMedGoogle Scholar
  43. 43.
    Tappel AL (1973) Lipid peroxidation damage to cell components. Fed Proc 32:1870–1874PubMedGoogle Scholar
  44. 44.
    Travacio M, Llesuy S (1996) Antioxidant enzymes and their modification under oxidative stress conditions. Free Rad Res Latin Amer 48:9–13Google Scholar
  45. 45.
    Diplock AT (1994) Antioxidants and free radical scavengers. In: Rice-Evans CA, Burdon RH (eds) Free radical damage and its control, 1st edn. Elsevier, Amsterdam, pp. 113–130CrossRefGoogle Scholar
  46. 46.
    Moore DJ, West AB, Dawson VL, Dawson TM (2005) Molecular pathophysiology of Parkinson’s disease. Annu Ver Neurosci 28:57–87CrossRefGoogle Scholar
  47. 47.
    Papa L, Rockwell P (2008) Persistent mitochondrial dysfunction and oxidative stress hinder neuronal cell recovery from reversible proteasome inhibition. Apoptosis 13(4):588–599CrossRefPubMedGoogle Scholar
  48. 48.
    Takuma K, Baba A, Matsuda T (2004) Astrocyte apoptosis: implications for neuroprotection. Prog Neurobiol 72(2):111–127CrossRefPubMedGoogle Scholar
  49. 49.
    Andreazza AC, Shao L, Wang JF, Young T (2010) Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder. Arch Gen Psychiatry 67(4):360–368CrossRefPubMedGoogle Scholar
  50. 50.
    Dzeja PP, Terzic A (2003) Phosphotransfer networks and cellular energetics. J Exp Biol 206:2039–2047CrossRefPubMedGoogle Scholar
  51. 51.
    Pucar D, Dzeja PP, Bast P, Gumina RJ, Drahl C, Lim L, Juranic N, Macura S et al (2004) Mapping hypoxia-induced bioenergetic rearrangements and metabolic signaling by 18 O-assisted 31 PNMR and 1 H NMR spectroscopy. Mol Cell Biochem 256–257(1–2):281–289CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Halliwell B, Gutteridge JMC (2007) Measurement of reactive species. In: Halliwell B, Gutteridge JMC (eds) Free radicals in biology and medicine, 4th edn. Oxford University Press, Oxford, pp. 268–340Google Scholar
  53. 53.
    Schulze A (2003) Creatine deficiency syndromes. Mol Cell Biochem 244:143–150CrossRefPubMedGoogle Scholar
  54. 54.
    Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong J, Knapp DJ, Crews FT (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55:453–462CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358CrossRefPubMedGoogle Scholar
  56. 56.
    Lowry OH, Rosebrough N, Farr AL, Randal RJ (1951) Protein measurement with a Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Vivian Strassburger Andrade
    • 1
  • Denise Bertin Rojas
    • 1
  • Rodrigo Binkowski de Andrade
    • 1
  • Tomas Duk Hwa Kim
    • 1
  • Adriana Fernanda Vizuete
    • 1
  • Ângela Zanatta
    • 1
  • Moacir Wajner
    • 1
  • Carlos-Alberto Saraiva Gonçalves
    • 1
  • Clovis Milton Duval Wannmacher
    • 1
  1. 1.Departamento de Bioquímica, Instituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations