Molecular Neurobiology

, Volume 55, Issue 5, pp 3800–3811 | Cite as

Memory and Learning Dysfunction Following Copper Toxicity: Biochemical and Immunohistochemical Basis

  • Jayantee Kalita
  • Vijay Kumar
  • Usha K. Misra
  • Himangsu K. Bora
Article

Abstract

The prototype disease of Cu toxicity in human is Wilson disease, and cognitive impairment is the presenting symptom of it. There is no study correlating Cu-induced excitotoxicity, apoptosis, and astrocytic reaction with memory dysfunction. We report excitotoxicity, apoptosis, and astrocytic reaction of the hippocampus and frontal cortex with memory dysfunction in rat model of Cu toxicity. Thirty-six rats were divided into group I (control) and group II (100 mg/kgBwt/day CuSO4 orally). Y-maze was performed for memory and learning at 0, 30, 60, and 90 days. Frontal and hippocampal free Cu concentration, oxidative stress markers [glutathione (GSH), total antioxidant toxicity (TAC), and malondialdehyde (MDA)], and glutamate were measured by atomic absorption spectroscopy, spectrophotometry, and ELISA, respectively. N-methyl-d-aspartate receptors (NMDARs) NR1, NR2A, and NR2B were done by real-time polymerase chain reaction. Immunohistochemistry for caspase-3 and glial fibrillary acidic protein (GFAP) were done and quantified using the ImageJ software. The glutamate level in hippocampus was increased, and NMDAR expression was decreased at 30, 60, and 90 days in group II compared to group I. In the frontal cortex, glutamate was increased at 90 days, but NMDARs were not significantly different in group II compared to group I. Caspase-3 and GFAP expressions were also higher in group II compared to group I, and these changes were more marked in hippocampus than frontal cortex. These changes correlated with respective free tissue Cu, oxidative stress, and Y-maze attention score. Cu toxicity induces apoptosis and astrocytosis of the hippocampus and frontal cortex through direct or glutamate and oxidative stress pathways, and results in impaired memory and learning.

Keywords

Copper toxicity Glutamate Apoptosis Caspase GFAP Oxidative stress 

Abbreviations

Cu

Copper

GSH

Glutathione

TAC

Total antioxidant capacity

MDA

Malondialdehyde

LPO

Lipid peroxidation

kgBWt

kg body weight

WD

Wilson disease

NMDA

N-methyl-d-aspartate

GFAP

Glial fibrillary acidic protein

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethics Approval

This research was approved by the Animal Ethics Committee of the CSIR-Central Drug Research Institute, Lucknow, India (IACE/2012/29).

Funding

Mr. Vijay Kumar received scholarship from Indian Council of Medical Research, Government of India (ICMR-JRF, 3/1/3/JRF-2009/MPD 31381).

Supplementary material

12035_2017_619_MOESM1_ESM.docx (14 kb)
Table S1 (DOCX 13 kb)
12035_2017_619_MOESM2_ESM.docx (15 kb)
Table S2 (DOCX 14 kb)
12035_2017_619_MOESM3_ESM.docx (15 kb)
Table S3 (DOCX 14 kb)

References

  1. 1.
    Fu S, O’Neal S, Hong L, Jiang W, Zheng W (2015) Elevated adult neurogenesis in brain subventricular zone following in vivo manganese exposure: roles of copper and DMT1. Toxicol Sci 143(2):482–498. doi: 10.1093/toxsci/kfu249 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Llanos RM, Mercer JF (2002) The molecular basis of copper homeostasis copper-related disorders. DNA Cell Biol 21(4):259–270. doi: 10.1089/104454902753759681 CrossRefPubMedGoogle Scholar
  3. 3.
    Litwin T, Gromadzka G, Szpak GM, Jablonka-Salach K, Bulska E, Czlonkowska A (2013) Brain metal accumulation in Wilson’s disease. J Neurol Sci 329(1–2):55–58. doi: 10.1016/j.jns.2013.03.021 CrossRefPubMedGoogle Scholar
  4. 4.
    Choi BS, Zheng W (2009) Copper transport to the brain by the blood-brain barrier and blood-CSF barrier. Brain Res 1248:14–21. doi: 10.1016/j.brainres.2008.10.056 CrossRefPubMedGoogle Scholar
  5. 5.
    Wu F, Wang J, Pu C, Qiao L, Jiang C (2015) Wilson’s disease: a comprehensive review of the molecular mechanisms. Int J Mol Sci 16(3):6419–6431. doi: 10.3390/ijms16036419 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Rodriguez-Castro KI, Hevia-Urrutia FJ, Sturniolo GC (2015) Wilson’s disease: a review of what we have learned. World J Hepatol 7(29):2859–2870. doi: 10.4254/wjh.v7.i29.2859 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bandmann O, Weiss KH, Kaler SG (2015) Wilson’s disease and other neurological copper disorders. Lancet Neurol 14(1):103–113. doi: 10.1016/S1474-4422(14)70190-5 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Das M, Misra UK, Kalita J (2007) A study of clinical, MRI and multimodality evoked potentials in neurologic Wilson disease. Eur J Neurol 14(5):498–504. doi: 10.1111/j.1468-1331.2006.01676.x CrossRefPubMedGoogle Scholar
  9. 9.
    Ranjan A, Kalita J, Kumar S, Bhoi SK, Misra UK (2015) A study of MRI changes in Wilson disease and its correlation with clinical features and outcome. Clin Neurol Neurosurg 138:31–36. doi: 10.1016/j.clineuro.2015.07.013 CrossRefPubMedGoogle Scholar
  10. 10.
    Sinha S, Taly AB, Prashanth LK, Ravishankar S, Arunodaya GR, Vasudev MK (2007) Sequential MRI changes in Wilson’s disease with de-coppering therapy: a study of 50 patients. Br J Radiol 80(957):744–749. doi: 10.1259/bjr/48911350 CrossRefPubMedGoogle Scholar
  11. 11.
    Alanen A, Komu M, Penttinen M, Leino R (1999) Magnetic resonance imaging and proton MR spectroscopy in Wilson’s disease. Br J Radiol 72(860):749–756. doi: 10.1259/bjr.72.860.10624340 CrossRefPubMedGoogle Scholar
  12. 12.
    Kalita J, Kumar V, Misra UK, Ranjan A, Khan H, Konwar R (2014) A study of oxidative stress, cytokines and glutamate in Wilson disease and their asymptomatic siblings. J Neuroimmunol 274(1–2):141–148. doi: 10.1016/j.jneuroim.2014.06.013 CrossRefPubMedGoogle Scholar
  13. 13.
    Kalita J, Kumar V, Ranjan A, Misra UK (2015) Role of oxidative stress in the worsening of neurologic Wilson disease following chelating therapy. NeuroMolecular Med 17(4):364–372. doi: 10.1007/s12017-015-8364-8 CrossRefPubMedGoogle Scholar
  14. 14.
    Ozcelik D, Uzun H (2009) Copper intoxication; antioxidant defenses and oxidative damage in rat brain. Biol Trace Elem Res 127(1):45–52. doi: 10.1007/s12011-008-8219-3 CrossRefPubMedGoogle Scholar
  15. 15.
    Musacco-Sebio R, Ferrarotti N, Saporito-Magrina C, Semprine J, Fuda J, Torti H, Boveris A, Repetto MG (2014) Oxidative damage to rat brain in iron and copper overloads. Metallomics 6(8):1410–1416. doi: 10.1039/c3mt00378g CrossRefPubMedGoogle Scholar
  16. 16.
    Gaier ED, Rodriguiz RM, Zhou J, Ralle M, Wetsel WC, Eipper BA, Mains RE (2014) In vivo and in vitro analyses of amygdalar function reveal a role for copper. J Neurophysiol 111(10):1927–1939. doi: 10.1152/jn.00631.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Gaier ED, Eipper BA, Mains RE (2013) Copper signaling in the mammalian nervous system: synaptic effects. J Neurosci Res 91(1):2–19. doi: 10.1002/jnr.23143 PubMedGoogle Scholar
  18. 18.
    Horning MS, Trombley PQ (2001) Zinc and copper influence excitability of rat olfactory bulb neurons by multiple mechanisms. J Neurophysiol 86(4):1652–1660CrossRefPubMedGoogle Scholar
  19. 19.
    Trombley PQ, Shepherd GM (1996) Differential modulation by zinc and copper of amino acid receptors from rat olfactory bulb neurons. J Neurophysiol 76(4):2536–2546CrossRefPubMedGoogle Scholar
  20. 20.
    Weiser T, Wienrich M (1996) The effects of copper ions on glutamate receptors in cultured rat cortical neurons. Brain Res 742(1–2):211–218CrossRefPubMedGoogle Scholar
  21. 21.
    Schlief ML, Gitlin JD (2006) Copper homeostasis in the CNS: a novel link between the NMDA receptor and copper homeostasis in the hippocampus. Mol Neurobiol 33(2):81–90. doi: 10.1385/MN:33:2:81 CrossRefPubMedGoogle Scholar
  22. 22.
    Opazo CM, Greenough MA, Bush AI (2014) Copper: from neurotransmission to neuroproteostasis. Front Aging Neurosci 6:143. doi: 10.3389/fnagi.2014.00143 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Salazar-Weber NL, Smith JP (2011) Copper inhibits NMDA receptor-independent LTP and modulates the paired-pulse ratio after LTP in mouse hippocampal slices. Int J Alzheimers Dis 2011:864753. doi: 10.4061/2011/864753 PubMedPubMedCentralGoogle Scholar
  24. 24.
    Scheiber IF, Dringen R (2013) Astrocyte functions in the copper homeostasis of the brain. Neurochem Int 62(5):556–565. doi: 10.1016/j.neuint.2012.08.017 CrossRefPubMedGoogle Scholar
  25. 25.
    Kalita J, Kumar V, Misra UK (2016) A study on apoptosis and anti-apoptotic status in Wilson disease. Mol Neurobiol 53(10):6659–6667. doi: 10.1007/s12035-015-9570-y CrossRefPubMedGoogle Scholar
  26. 26.
    Ranjan A, Kalita J, Kumar V, Misra UK (2015) MRI and oxidative stress markers in neurological worsening of Wilson disease following penicillamine. Neurotoxicology 49:45–49. doi: 10.1016/j.neuro.2015.05.004 CrossRefPubMedGoogle Scholar
  27. 27.
    Kalita J, Kumar V, Chandra S, Kumar B, Misra UK (2014) Worsening of Wilson disease following penicillamine therapy. Eur Neurol 71(3–4):126–131. doi: 10.1159/000355276 CrossRefPubMedGoogle Scholar
  28. 28.
    Vlachova V, Zemkova H, Vyklicky L Jr (1996) Copper modulation of NMDA responses in mouse and rat cultured hippocampal neurons. Eur J Neurosci 8(11):2257–2264CrossRefPubMedGoogle Scholar
  29. 29.
    Leiva J, Palestini M, Infante C, Goldschmidt A, Motles E (2009) Copper suppresses hippocampus LTP in the rat, but does not alter learning or memory in the morris water maze. Brain Res 1256:69–75. doi: 10.1016/j.brainres.2008.12.041 CrossRefPubMedGoogle Scholar
  30. 30.
    Maureira C, Letelier JC, Alvarez O, Delgado R, Vergara C (2015) Copper enhances cellular and network excitabilities, and improves temporal processing in the rat hippocampus. Eur J Neurosci 42(12):3066–3080. doi: 10.1111/ejn.13104 CrossRefPubMedGoogle Scholar
  31. 31.
    Friedlander RM (2003) Apoptosis and caspases in neurodegenerative diseases. N Engl J Med 348(14):1365–1375. doi: 10.1056/NEJMra022366 CrossRefPubMedGoogle Scholar
  32. 32.
    Schmidt-Kastner R, Wietasch K, Weigel H, Eysel UT (1993) Immunohistochemical staining for glial fibrillary acidic protein (GFAP) after deafferentation or ischemic infarction in rat visual system: features of reactive and damaged astrocytes. Int J Dev Neurosci 11(2):157–174CrossRefPubMedGoogle Scholar
  33. 33.
    Middeldorp J, Hol EM (2011) GFAP in health and disease. Prog Neurobiol 93(3):421–443. doi: 10.1016/j.pneurobio.2011.01.005 CrossRefPubMedGoogle Scholar
  34. 34.
    Dong Y, Benveniste EN (2001) Immune function of astrocytes. Glia 36(2):180–190. doi: 10.1002/glia.1107 CrossRefPubMedGoogle Scholar
  35. 35.
    Schosinsky KH, Lehmann HP, Beeler MF (1974) Measurement of ceruloplasmin from its oxidase activity in serum by use of o-dianisidine dihydrochloride. Clin Chem 20(12):1556–1563PubMedGoogle Scholar
  36. 36.
    Kumar V, Kalita J, Bora HK, Misra UK (2016) Relationship of antioxidant and oxidative stress markers in different organs following copper toxicity in a rat model. Toxicol Appl Pharmacol 293:37–43. doi: 10.1016/j.taap.2016.01.007 CrossRefPubMedGoogle Scholar
  37. 37.
    Meldrum BS (2000) Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr 130(4S Suppl):1007S–1015SCrossRefPubMedGoogle Scholar
  38. 38.
    Watanabe M, Fukaya M, Sakimura K, Manabe T, Mishina M, Inoue Y (1998) Selective scarcity of NMDA receptor channel subunits in the stratum lucidum (mossy fibre-recipient layer) of the mouse hippocampal CA3 subfield. Eur J Neurosci 10(2):478–487CrossRefPubMedGoogle Scholar
  39. 39.
    Tecchio F, Assenza G, Zappasodi F, Mariani S, Salustri C, Squitti R (2011) Glutamate-mediated primary somatosensory cortex excitability correlated with circulating copper and ceruloplasmin. Int J Alzheimers Dis 2011:292593. doi: 10.4061/2011/292593 PubMedPubMedCentralGoogle Scholar
  40. 40.
    Strausak D, Mercer JF, Dieter HH, Stremmel W, Multhaup G (2001) Copper in disorders with neurological symptoms: Alzheimer’s, Menkes, and Wilson diseases. Brain Res Bull 55(2):175–185CrossRefPubMedGoogle Scholar
  41. 41.
    Clements JD, Lester RA, Tong G, Jahr CE, Westbrook GL (1992) The time course of glutamate in the synaptic cleft. Science 258(5087):1498–1501CrossRefPubMedGoogle Scholar
  42. 42.
    Stavrovskaya IG, Kristal BS (2005) The powerhouse takes control of the cell: is the mitochondrial permeability transition a viable therapeutic target against neuronal dysfunction and death? Free Radic Biol Med 38(6):687–697. doi: 10.1016/j.freeradbiomed.2004.11.032 CrossRefPubMedGoogle Scholar
  43. 43.
    Hardingham GE, Fukunaga Y, Bading H (2002) Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 5(5):405–414. doi: 10.1038/nn835 CrossRefPubMedGoogle Scholar
  44. 44.
    Jiao XT, Liu XQ, Huang LS, Zhang YJ, Han LS (2009) Role of caspase-3, -8, and -9 in apoptosis of copper induced primary cortical neurons. Zhongguo dang dai er ke za zhi = Chin J Contemp Pediatr 11(11):917–922Google Scholar
  45. 45.
    Santos S, Silva AM, Matos M, Monteiro SM, Alvaro AR (2016) Copper induced apoptosis in Caco-2 and Hep-G2 cells: expression of caspases 3, 8 and 9, AIF and p53. Comp Biochem Physiol Toxicol Pharmacol 185-186:138–146. doi: 10.1016/j.cbpc.2016.03.010 CrossRefGoogle Scholar
  46. 46.
    Reier PJ (2012) Gliosis following CNS injury: the anatomy of astrocytic scars and their influences on axonal elongation. Astrocytes 3:263–324Google Scholar
  47. 47.
    Pal A, Prasad R (2014) Recent discoveries on the functions of astrocytes in the copper homeostasis of the brain: a brief update. Neurotox Res 26(1):78–84. doi: 10.1007/s12640-013-9453-9 CrossRefPubMedGoogle Scholar
  48. 48.
    Eng LF, Ghirnikar RS (1994) GFAP and astrogliosis. Brain Pathol 4(3):229–237CrossRefPubMedGoogle Scholar
  49. 49.
    Pal A, Badyal RK, Vasishta RK, Attri SV, Thapa BR, Prasad R (2013) Biochemical, histological, and memory impairment effects of chronic copper toxicity: a model for non-Wilsonian brain copper toxicosis in Wistar rat. Biol Trace Elem Res 153(1–3):257–268. doi: 10.1007/s12011-013-9665-0 CrossRefPubMedGoogle Scholar
  50. 50.
    Pal A, Vasishta R, Prasad R (2013) Hepatic and hippocampus iron status is not altered in response to increased serum ceruloplasmin and serum “free” copper in Wistar rat model for non-Wilsonian brain copper toxicosis. Biol Trace Elem Res 154(3):403–411. doi: 10.1007/s12011-013-9753-1 CrossRefPubMedGoogle Scholar
  51. 51.
    Przybylkowski A, Gromadzka G, Wawer A, Bulska E, Jablonka-Salach K, Grygorowicz T, Schnejder-Pacholek A, Czlonkowski A (2013) Neurochemical and behavioral characteristics of toxic milk mice: an animal model of Wilson’s disease. Neurochem Res 38(10):2037–2045. doi: 10.1007/s11064-013-1111-3 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Arnal N, Dominici L, de Tacconi MJ, Marra CA (2014) Copper-induced alterations in rat brain depends on route of overload and basal copper levels. Nutrition 30(1):96–106. doi: 10.1016/j.nut.2013.06.009 CrossRefPubMedGoogle Scholar
  53. 53.
    Alexandrova A, Petrov L, Georgieva A, Kessiova M, Tzvetanova E, Kirkova M, Kukan M (2008) Effect of copper intoxication on rat liver proteasome activity: relationship with oxidative stress. J Biochem Mol Toxicol 22(5):354–362. doi: 10.1002/jbt.20248 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of NeurologySanjay Gandhi Post Graduate Medical SciencesLucknowIndia
  2. 2.National Laboratory Animal CentreCSIR-Central Drug Research InstituteLucknowIndia

Personalised recommendations