Molecular Neurobiology

, Volume 55, Issue 5, pp 4009–4029 | Cite as

Cytoskeleton-Associated Risk Modifiers Involved in Early and Rapid Progression of Sporadic Creutzfeldt-Jakob Disease

  • Saima Zafar
  • Neelam Younas
  • Nadeem Sheikh
  • Waqas Tahir
  • Mohsin Shafiq
  • Matthias Schmitz
  • Isidre Ferrer
  • Olivier Andréoletti
  • Inga Zerr
Article

Abstract

A high priority in the prion field is to identify pre-symptomatic events and associated profile of molecular changes. In this study, we demonstrate the pre-symptomatic dysregulation of cytoskeleton assembly and its associated cofilin-1 pathway in strain and brain region-specific manners in MM1 and VV2 subtype-specific Creutzfeldt-Jakob disease at clinical and pre-clinical stage. At physiological level, PrPC interaction with cofilin-1 and phosphorylated form of cofilin (p-cofilin(Ser3)) was investigated in primary cultures of mouse cortex neurons (PCNs) of PrPC wild-type and knockout mice (PrP−/−). Short-interfering RNA downregulation of active form of cofilin-1 resulted in the redistribution/downregulation of PrPC, increase of activated form of microglia, accumulation of dense form of F-actin, and upregulation of p-cofilin(Ser3). This upregulated p-cofilin(Ser3) showed redistribution of expression predominantly in the activated form of microglia in PCNs. At pathological level, cofilin-1 expression was significantly altered in cortex and cerebellum in both humans and mice at pre-clinical stage and at early symptomatic clinical stage of the disease. Further, to better understand the possible mechanism of dysregulation of cofilin-1, we also demonstrated alterations in upstream regulators; LIM kinase isoform 1 (LIMK1), slingshot phosphatase isoform 1 (SSH1), RhoA-associated kinase (Rock2), and amyloid precursor protein (APP) in sporadic Creutzfeldt-Jakob disease MM1 mice and in human MM1 and VV2 frontal cortex and cerebellum samples. In conclusion, our findings demonstrated for the first time a key pre-clinical response of cofilin-1 and the associated pathway in prion disease.

Keywords

Cofilin Actin CJD MM1 VV2 Prion protein LIMK Rock APP SSH1 Microglia Cerebellum Cortex 

Notes

Acknowledgements

We give special thanks to Dr. Torres at CISA INIA who produced the tg340 mice.

Compliance with Ethical Standards

Human samples from the Institute of Neuropathology Brain Bank (HUB-ICO-IDIBELL Biobank) and Biobank of Hospital Clinic-IDIBAPS were obtained following the Spanish legislation (Ley de la Investigación Biomédica 2013 and Real DecretoBiobancos 2014) and the approval of the local ethics committees.

All animal experiments were performed in accordance with the ethical standard set by Regierungspräsidium Tübingen (Regional Council) Experimental No. FLI 231/07 file reference number 35/9185.81-2. All animal experiments have been performed in compliance with the institutional and French national guidelines, in accordance with the European Community Council Directive 86/609/EEC. The experimental protocol was approved by the INRA Toulouse/ENVT ethics committee.

References

  1. 1.
    Tschampa HJ, Kallenberg K, Kretzschmar HA, Meissner B, Knauth M, Urbach H, Zerr I (2007) Pattern of cortical changes in sporadic Creutzfeldt-Jakob disease. Am J Neuroradiol 28:1114–1118CrossRefPubMedGoogle Scholar
  2. 2.
    Bishop MT, Will RG, Manson JC (2010) Defining sporadic Creutzfeldt-Jakob disease strains and their transmission properties. Proc Natl Acad Sci 107:12005–12010CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Parchi P, Giese A, Capellari S, Brown P, Schulz-Schaeffer W, Windl O, Zerr I, Budka H et al (1999) Classification of sporadic Creutzfeldt-Jakob disease based on molecular and phenotypic analysis of 300 subjects. Ann Neurol 46:224–233CrossRefPubMedGoogle Scholar
  4. 4.
    Parchi P, Strammiello R, Notari S, Giese A, Langeveld JP, Ladogana A, Zerr I, Roncaroli F et al (2009) Incidence and spectrum of sporadic Creutzfeldt-Jakob disease variants with mixed phenotype and co-occurrence of PrPSc types: an updated classification. Acta Neuropathol 118:659–671CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ferrer I, Puig B, Blanco R, Marti E (2000) Prion protein deposition and abnormal synaptic protein expression in the cerebellum in Creutzfeldt-Jakob disease. Neuroscience 97:715–726CrossRefPubMedGoogle Scholar
  6. 6.
    Jeffrey M, Halliday WG, Bell J, Johnston AR, Mac Leod NK, Ingham C, Sayers AR, Brown DA et al (2000) Synapse loss associated with abnormal PrP precedes neuronal degeneration in the scrapie-infected murine hippocampus. Neuropathol Appl Neurobiol 26:41–54CrossRefPubMedGoogle Scholar
  7. 7.
    Jeffrey M, McGovern G, Sisó S, González L (2011) Cellular and sub-cellular pathology of animal prion diseases: relationship between morphological changes, accumulation of abnormal prion protein and clinical disease. Acta Neuropathol 121:113–134CrossRefPubMedGoogle Scholar
  8. 8.
    Loubet D, Dakowski C, Pietri M, Pradines E, Bernard S, Callebert J, Ardila-Osorio H, Mouillet-Richard S et al (2012) Neuritogenesis: the prion protein controls beta1 integrin signaling activity. FASEB J 26:678–690CrossRefPubMedGoogle Scholar
  9. 9.
    Zafar S, Younas N, Correia S, Shafiq M, Tahir W, Schmitz M, Ferrer I, Andreoletti O et al (2016) Strain-specific altered regulatory response of Rab7a and Tau in Creutzfeldt-Jakob disease and Alzheimer’s disease. Mol NeurobiolGoogle Scholar
  10. 10.
    Eiseler T, Hausser A, De Kimpe L, Van Lint J, Pfizenmaier K (2010) Protein kinase D controls actin polymerization and cell motility through phosphorylation of cortactin. J Biol Chem 285:18672–18683CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Munnamalai V, Weaver CJ, Weisheit CE, Venkatraman P, Agim ZS, Quinn MT, Suter DM (2014) Bidirectional interactions between NOX2-type NADPH oxidase and the F-actin cytoskeleton in neuronal growth cones. J Neurochemn/aGoogle Scholar
  12. 12.
    Yamada H, Abe T, Satoh A, Okazaki N, Tago S, Kobayashi K, Yoshida Y, Oda Y et al (2013) Stabilization of actin bundles by a dynamin 1/cortactin ring complex is necessary for growth cone filopodia. J Neurosci 33:4514–4526CrossRefPubMedGoogle Scholar
  13. 13.
    Bosch M, Castro J, Saneyoshi T, Matsuno H, Sur M, Hayashi Y (2014) Structural and molecular remodeling of dendritic spine substructures during long-term potentiation. Neuron Cell Press 82:444–459Google Scholar
  14. 14.
    Okamoto K, Nagai T, Miyawaki A, Hayashi Y (2004) Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat Neurosci 7:1104–1112CrossRefPubMedGoogle Scholar
  15. 15.
    Schubert V, Dotti CG (2007) Transmitting on actin: synaptic control of dendritic architecture. J Cell Sci 120:205–212CrossRefPubMedGoogle Scholar
  16. 16.
    Sekino Y, Kojima N, Shirao T (2007) Role of actin cytoskeleton in dendritic spine morphogenesis. Neurochem Int 51:92–104CrossRefPubMedGoogle Scholar
  17. 17.
    Star EN, Kwiatkowski DJ, Murthy VN (2002) Rapid turnover of actin in dendritic spines and its regulation by activity. Nat Neurosci 5:239–246CrossRefPubMedGoogle Scholar
  18. 18.
    Bravo-Cordero JJ, Magalhaes MA, Eddy RJ, Hodgson L, Condeelis J (2013) Functions of cofilin in cell locomotion and invasion. Nat Rev Mol Cell Biol 14:405–415CrossRefPubMedGoogle Scholar
  19. 19.
    Hagedorn EJ, Kelley LC, Naegeli KM, Wang Z, Chi Q, Sherwood DR (2014) ADF/cofilin promotes invadopodial membrane recycling during cell invasion in vivo. J Cell Biol 204:1209–1218CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Vitriol EA, Wise AL, Berginski ME, Bamburg JR, Zheng JQ (2013) Instantaneous inactivation of cofilin reveals its function of F-actin disassembly in lamellipodia. Mol Biol Cell 24:2238–2247CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kim T, Vidal GS, Djurisic M, William CM, Birnbaum ME, Garcia KC, Hyman BT, Shatz CJ (2013) Human LilrB2 is a beta-amyloid receptor and its murine homolog PirB regulates synaptic plasticity in an Alzheimer’s model. Science 341:1399–1404Google Scholar
  22. 22.
    Bellenchi GC, Gurniak CB, Perlas E, Middei S, Ammassari-Teule M, Witke W (n.d.)Google Scholar
  23. 23.
    Goodson M, Rust MB, Witke W, Bannerman D, Mott R, Ponting CP, Flint J (2012) Cofilin-1: a modulator of anxiety in mice. PLoS Genet 8:e1002970CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Gu J, Lee CW, Fan Y, Komlos D, Tang X, Sun C, Yu K, Hartzell HC et al (2010) ADF/cofilin-mediated actin dynamics regulate AMPA receptor trafficking during synaptic plasticity. Nat Neurosci 13:1208–1215CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Rust MB, Gurniak CB, Renner M, Vara H, Morando L, Gorlich A, Sassoe-Pognetto M, Banchaabouchi MA et al (2010) Learning, AMPA receptor mobility and synaptic plasticity depend on n-cofilin-mediated actin dynamics. EMBO J 29:1889–1902CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Van Troys M, Huyck L, Leyman S, Dhaese S, Vandekerkhove Jl, Ampe C (2008) Ins and outs of ADF/cofilin activity and regulation. Eur J Cell BiolGoogle Scholar
  27. 27.
    Gu H, Yu SP, Gutekunst CA, Gross RE, Wei L (2013) Inhibition of the Rho signaling pathway improves neurite outgrowth and neuronal differentiation of mouse neural stem cells. Int J Physiol Pathophysiol Pharmacol 5:11–20PubMedPubMedCentralGoogle Scholar
  28. 28.
    Huang TY, Minamide LS, Bamburg JR, Bokoch GM (2008) Chronophin mediates an ATP-sensing mechanism for cofilin dephosphorylation and neuronal cofilin-actin rod formation. Dev Cell 15:691–703CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Nishita M, Tomizawa C, Yamamoto M, Horita Y, Ohashi K, Mizuno K (2005) Spatial and temporal regulation of cofilin activity by LIM kinase and Slingshot is critical for directional cell migration. J Cell Biol 171:349–359CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Mizuno K (2013) Signaling mechanisms and functional roles of cofilin phosphorylation and dephosphorylation. Cell Signal 25:457–469CrossRefPubMedGoogle Scholar
  31. 31.
    Kligys K, Yao J, Yu D, Jones JCR (2009) 14-3-3 zeta/tau heterodimers regulate Slingshot activity in migrating keratinocytes. Biochem Biophys Res Commun 383:450–454Google Scholar
  32. 32.
    Ladogana A, Sanchez-Juan P, Mitrova E, Green A, Cuadrado-Corrales N, Sanchez-Valle R, Koscova S, Aguzzi A et al (2009) Cerebrospinal fluid biomarkers in human genetic transmissible spongiform encephalopathiesa. J Neurol 256:1620–1628CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Schmitz M, Ebert E, Stoeck K, Karch A, Collins S, Calero M, Sklaviadis T, Laplanche JL et al (2015) Validation of 14-3-3 protein as a marker in sporadic Creutzfeldt-Jakob disease diagnostic. Mol NeurobiolGoogle Scholar
  34. 34.
    Zerr I, Bodemer M, Weber T (1997) The 14-3-3 brain protein and transmissible spongiform encephalopathy. N Engl J Med 336:874–875PubMedGoogle Scholar
  35. 35.
    Llorens F, Ansoleaga B, Garcia-Esparcia P, Zafar S, Grau-Rivera O, Lopez-Gonzalez I, Blanco R, Carmona M et al (2013) PrP mRNA and protein expression in brain and PrP(c) in CSF in Creutzfeldt-Jakob disease MM1 and VV2. Prion 7:383–393CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Zafar S, Schmitz M, Younus N, Tahir W, Shafiq M, Llorens F, Ferrer I, Andeoletti O et al (2015) Creutzfeldt-Jakob disease subtype-specific regional and temporal regulation of ADP ribosylation factor-1-dependent rho/MLC pathway at pre-clinical stage. J Mol Neurosci 56:329–348CrossRefPubMedGoogle Scholar
  37. 37.
    Padilla D, Beringue V, Espinosa JC, Andreoletti O, Jaumain E, Reine F, Herzog L, Gutierrez-Adan A et al (2011) Sheep and goat BSE propagate more efficiently than cattle BSE in human PrP transgenic mice. PLoS Pathog 7:e1001319CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Carimalo J, Cronier S, Petit G, Peyrin JM, Boukhtouche F, Arbez N, Lemaigre-Dubreuil Y, Brugg B et al (2005) Activation of the JNK-c-Jun pathway during the early phase of neuronal apoptosis induced by PrP106-126 and prion infection. Eur J Neurosci 21:2311–2319CrossRefPubMedGoogle Scholar
  39. 39.
    Bueler H, Fischer M, Lang Y, Bluethmann H, Lipp HP, DeArmond SJ, Prusiner SB, Aguet M et al (1992) Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356:577–582CrossRefPubMedGoogle Scholar
  40. 40.
    Kawamoto JC, Barrett JN (1986) Cryopreservation of primary neurons for tissue culture. Brain Res 384:84–93CrossRefPubMedGoogle Scholar
  41. 41.
    Knusel B, Michel PP, Schwaber JS, Hefti F (1990) Selective and nonselective stimulation of central cholinergic and dopaminergic development in vitro by nerve growth factor, basic fibroblast growth factor, epidermal growth factor, insulin and the insulin-like growth factors I and II. J Neurosci 10:558–570CrossRefPubMedGoogle Scholar
  42. 42.
    Hotulainen P, Paunola E, Vartiainen MK, Lappalainen P (2005) Actin-depolymerizing factor and cofilin-1 play overlapping roles in promoting rapid F-actin depolymerization in mammalian nonmuscle cells. Mol Biol Cell 16:649–664CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S (2004) Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431:805–810CrossRefPubMedGoogle Scholar
  44. 44.
    Zafar S, Asif AR, Ramljak S, Tahir W, Schmitz M, Zerr I (2014) Anchorless 23-230 PrP(C) interactomics for elucidation of PrP(C) protective role. Mol Neurobiol 49:1385–1399CrossRefPubMedGoogle Scholar
  45. 45.
    Cory AH, Owen TC, Barltrop JA, Cory JG (1991) Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Commun 3:207–212CrossRefPubMedGoogle Scholar
  46. 46.
    Zafar S, von Ahsen N, Oellerich M, Zerr I, Schulz-Schaeffer WJ, Armstrong VW, Asif AR (2011) Proteomics approach to identify the interacting partners of cellular prion protein and characterization of Rab7a interaction in neuronal cells. J Proteome Res 10:3123–3135CrossRefPubMedGoogle Scholar
  47. 47.
    Giorgi A, Di FL, Principe S, Mignogna G, Sennels L, Mancone C, Alonzi T, Sbriccoli M et al (2009) Proteomic profiling of PrP27-30-enriched preparations extracted from the brain of hamsters with experimental scrapie. Proteomics 9:3802–3814CrossRefPubMedGoogle Scholar
  48. 48.
    Nebl G, Meuer SC, Samstag Y (1996) Dephosphorylation of serine 3 regulates nuclear translocation of cofilin. J Biol Chem 271(42):26276–26280Google Scholar
  49. 49.
    Gurniak CB, Perlas E, Witke W (2005) The actin depolymerizing factor n-cofilin is essential for neural tube morphogenesis and neural crest cell migration. Dev Biol 278:231–241CrossRefPubMedGoogle Scholar
  50. 50.
    Giese A, Brown DR, Groschup MH, Feldmann C, Haist I, Kretzschmar HA (1998) Role of microglia in neuronal cell death in prion disease. Brain Pathol 8:449–457CrossRefPubMedGoogle Scholar
  51. 51.
    Llorens F, Lopez-Gonzalez I, Thune K, Carmona M, Zafar S, Andreoletti O, Zerr I, Ferrer I (2014) Subtype and regional-specific neuroinflammation in sporadic Creutzfeldt-Jakob disease. Front Aging Neurosci 6:198CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Minamide LS, Striegl AM, Boyle JA, Meberg PJ, Bamburg JR (2000) Neurodegenerative stimuli induce persistent ADF/cofilin-actin rods that disrupt distal neurite function. Nat Cell Biol 2:628–636CrossRefPubMedGoogle Scholar
  53. 53.
    Rahman T, Davies DS, Tannenberg RK, Fok S, Shepherd C, Dodd PR, Cullen KM, Goldsbury C (2014a) Cofilin rods and aggregates concur with tau pathology and the development of Alzheimer’s disease. J Alzheimers Dis 42:1443–1460PubMedGoogle Scholar
  54. 54.
    Woo JA, Zhao X, Khan H, Penn C, Wang X, Joly-Amado A, Weeber E, Morgan D et al (2015) Slingshot-cofilin activation mediates mitochondrial and synaptic dysfunction via Abeta ligation to beta1-integrin conformers. Cell Death Differ 22:921–934CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Bernstein BW, Bamburg JR (2010) ADF/cofilin: a functional node in cell biology. Trends Cell Biol 20:187–195CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Liu L, Li J, Zhang L, Zhang F, Zhang R, Chen X, Brakebusch C, Wang Z et al (2015) Cofilin phosphorylation is elevated after F-actin disassembly induced by Rac1 depletion. Biofactors 41:352–359CrossRefPubMedGoogle Scholar
  57. 57.
    Cottrell JR, Levenson JM, Kim SH, Gibson HE, Richardson KA, Sivula M, Li B, Ashford CJ et al (2013) Working memory impairment in calcineurin knock-out mice is associated with alterations in synaptic vesicle cycling and disruption of high-frequency synaptic and network activity in prefrontal cortex. J Neurosci 33:10938–10949CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Zeng H, Chattarji S, Barbarosie M, Rondi-Reig L, Philpot BD, Miyakawa T, Bear MF, Tonegawa S (2001) Forebrain-specific calcineurin knockout selectively impairs bidirectional synaptic plasticity and working/episodic-like memory. Cell 107:617–629CrossRefPubMedGoogle Scholar
  59. 59.
    Mukherjee A, Soto C (2011) Role of calcineurin in neurodegeneration produced by misfolded proteins and endoplasmic reticulum stress. Curr Opin Cell Biol 23:223–230CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Gohla A, Bokoch GM (2002) 14-3-3 regulates actin dynamics by stabilizing phosphorylated cofilin. Curr Biol 12:1704–1710CrossRefPubMedGoogle Scholar
  61. 61.
    Palmer KJ, Watson P, Stephens DJ (2005) The role of microtubules in transport between the endoplasmic reticulum and Golgi apparatus in mammalian cells. Biochem Soc Symp 1-13.Google Scholar
  62. 62.
    Striebel JF, Race B, Carroll JA, Phillips K, Chesebro B (2016) Knockout of fractalkine receptor, Cx3cr1, does not alter disease or microglial activation in prion-infected mice. J Gen VirolGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Saima Zafar
    • 1
  • Neelam Younas
    • 1
  • Nadeem Sheikh
    • 2
  • Waqas Tahir
    • 1
  • Mohsin Shafiq
    • 1
  • Matthias Schmitz
    • 1
  • Isidre Ferrer
    • 3
    • 4
  • Olivier Andréoletti
    • 5
  • Inga Zerr
    • 1
  1. 1.Department of Neurology, Clinical Dementia Center, and DZNEGeorg-August University, University Medical Center Goettingen (UMG)GoettingenGermany
  2. 2.Department of ZoologyUniversity of the PunjabLahorePakistan
  3. 3.Institute of NeuropathologyIDIBELL—University Hospital Bellvitge, University of BarcelonaHospitalet de LlobregatSpain
  4. 4.Network Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Ministry of HealthMadridSpain
  5. 5.Institut National de la Recherche Agronomique/Ecole Nationale VétérinaireToulouseFrance

Personalised recommendations