Molecular Neurobiology

, Volume 55, Issue 4, pp 2740–2753 | Cite as

Impact of High-Fat Diet and Early Stress on Depressive-Like Behavior and Hippocampal Plasticity in Adult Male Rats

  • Danusa Mar Arcego
  • Ana Paula Toniazzo
  • Rachel Krolow
  • Carine Lampert
  • Carolina Berlitz
  • Emily dos Santos Garcia
  • Fabrício do Couto Nicola
  • Juliana Bender Hoppe
  • Mariana Maier Gaelzer
  • Caroline Peres Klein
  • Camilla Lazzaretti
  • Carla Dalmaz


During development, the brain goes through fundamental processes, including organization of neural networks and plasticity. Environmental interventions may change initial brain programming, leading to long-lasting effects and altering the susceptibility to psychopathologies, including depression disorder. It is known that depression is a psychiatric disorder with a high prevalence worldwide, including high rates among adolescents. In this study, we evaluated whether social isolation in the prepubertal period and chronic use of high-fat diet (HFD) may induce depressive-like behavior in male adult rats. We also investigated hippocampal plasticity markers and neurotransmitter systems. We found both social isolation and HFD induced a depressive-like behavior in the forced swimming task. Moreover, chronic HFD reduced synaptic markers in hippocampus, demonstrated by reductions in βIII-tubulin (neuronal marker), PSD-95, SNAP-25, and neurotrophin-3. The HFD group also presented decreased glutamatergic and GABAergic receptors subunits. On the other hand, stress affected hippocampal brain-derived neurotrophic factor (BDNF) signaling pathways, and increased expression of subunit of the NMDA receptor (NR2A). Both factors (stress and diet) decreased GR in the hippocampus without affecting plasma corticosterone at basal levels. Interactions between early stress and HFD access were observed only in the BNDF receptor (tropomyosin receptor kinase B; TrkB) and synaptophysin. In summary, these findings showed that a brief social isolation and chronic HFD, during a sensitive developmental period, cause depressive-like behavior in adulthood. The mechanisms underlying these behavioral effects may involve changes in the levels of synaptic proteins in hippocampus: HFD consumption appears to affect synaptic markers, while social isolation affected BDNF signaling more significantly.


Early life environment Prepubertal period Social isolation Emotional responses BDNF High-calorie diets 



This work was financially supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes).

Compliance with Ethical Standards

All animal procedures were performed in strict accordance with the recommendations of the Brazilian Society for Neurosciences (SBNeC) and Brazilian Laws on the use of animals (Federal Law 11.794/2008), and were approved by the Institutional Ethical Committee (CEUA-UFRGS no. 25488).

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12035_2017_538_MOESM1_ESM.pdf (167 kb)
ESM 1 (PDF 166 kb).
12035_2017_538_MOESM2_ESM.pdf (13 kb)
ESM 2 (PDF 12 kb).


  1. 1.
    Kessler RC, Chiu WT, Demler O, Merikangas KR, Walters EE (2005) Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the national comorbidity survey replication. Arch Gen Psychiatry 62(6):617–627. doi: 10.1001/archpsyc.62.6.617 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Lopizzo N, Bocchio Chiavetto L, Cattane N, Plazzotta G, Tarazi FI, Pariante CM, Riva MA, Cattaneo A (2015) Gene-environment interaction in major depression: focus on experience-dependent biological systems. Front Psychiatry 6:68. doi: 10.3389/fpsyt.2015.00068 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Paus T, Keshavan M, Giedd JN (2008) Why do many psychiatric disorders emerge during adolescence? Nat Rev Neurosci 9(12):947–957. doi: 10.1038/nrn2513 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Nestler EJ, Barrot M, Dileone RJ, Eisch AJ, Gold SJ, Monteggia LM (2002) Neurobiology of depression. Neuron 34(1):13–25CrossRefPubMedGoogle Scholar
  5. 5.
    Serafini G, Hayley S, Pompili M, Dwivedi Y, Brahmachari G, Girardi P, Amore M (2014) Hippocampal neurogenesis, neurotrophic factors and depression: possible therapeutic targets? Cns Neurol Disord Drug Targets 13(10):1708–1721CrossRefPubMedGoogle Scholar
  6. 6.
    Duman RS, Monteggia LM (2006) A neurotrophic model for stress-related mood disorders. Biol Psychiatry 59(12):1116–1127. doi: 10.1016/j.biopsych.2006.02.013 CrossRefPubMedGoogle Scholar
  7. 7.
    Pariante CM, Miller AH (2001) Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment. Biol Psychiatry 49(5):391–404CrossRefPubMedGoogle Scholar
  8. 8.
    Groeneweg FL, Karst H, De Kloet ER, Joels M (2012) Mineralocorticoid and glucocorticoid receptors at the neuronal membrane, regulators of nongenomic corticosteroid signalling. Mol Cell Endocrinol 350(2):299–309. doi: 10.1016/j.mce.2011.06.020 CrossRefPubMedGoogle Scholar
  9. 9.
    Abildgaard A, Lund S, Hougaard KS (2014) Chronic high-fat diet increases acute neuroendocrine stress response independently of prenatal dexamethasone treatment in male rats. Acta Neuropsychiatr 26(1):8–18. doi: 10.1017/neu.2013.28 CrossRefPubMedGoogle Scholar
  10. 10.
    Juruena MF (2014) Early-life stress and HPA axis trigger recurrent adulthood depression. Epilepsy Behav 38:148–159. doi: 10.1016/j.yebeh.2013.10.020 CrossRefPubMedGoogle Scholar
  11. 11.
    Fuchs E, Flugge G (2004) Cellular consequences of stress and depression. Dialogues Clin Neurosci 6(2):171–183PubMedPubMedCentralGoogle Scholar
  12. 12.
    Hong S, Flashner B, Chiu M, Ver Hoeve E, Luz S, Bhatnagar S (2012) Social isolation in adolescence alters behaviors in the forced swim and sucrose preference tests in female but not in male rats. Physiol Behav 105(2):269–275. doi: 10.1016/j.physbeh.2011.08.036 CrossRefPubMedGoogle Scholar
  13. 13.
    Haj-Mirzaian A, Amiri S, Kordjazy N, Rahimi-Balaei M, Marzban H, Aminzadeh A, Dehpour AR, Mehr SE (2015) Blockade of NMDA receptors reverses the depressant, but not anxiogenic effect of adolescence social isolation in mice. Eur J Pharmacol 750:160–166. doi: 10.1016/j.ejphar.2015.01.006 CrossRefPubMedGoogle Scholar
  14. 14.
    Berry A, Bellisario V, Capoccia S, Tirassa P, Calza A, Alleva E, Cirulli F (2012) Social deprivation stress is a triggering factor for the emergence of anxiety- and depression-like behaviours and leads to reduced brain BDNF levels in C57BL/6J mice. Psychoneuroendocrinology 37(6):762–772. doi: 10.1016/j.psyneuen.2011.09.007 CrossRefPubMedGoogle Scholar
  15. 15.
    Buwalda B, Blom WA, Koolhaas JM, Van Dijk G (2001) Behavioral and physiological responses to stress are affected by high-fat feeding in male rats. Physiol Behav 73(3):371–377CrossRefPubMedGoogle Scholar
  16. 16.
    Laryea G, Arnett M, Muglia LJ (2015) Ontogeny of hypothalamic glucocorticoid receptor-mediated inhibition of the hypothalamic-pituitary-adrenal axis in mice. Stress:1–8. doi: 10.3109/10253890.2015.1046832
  17. 17.
    Mcneilly AD, Stewart CA, Sutherland C, Balfour DJ (2015) High fat feeding is associated with stimulation of the hypothalamic-pituitary-adrenal axis and reduced anxiety in the rat. Psychoneuroendocrinology 52:272–280. doi: 10.1016/j.psyneuen.2014.12.002 CrossRefPubMedGoogle Scholar
  18. 18.
    Sasaki A, De Vega WC, St-Cyr S, Pan P, Mcgowan PO (2013) Perinatal high fat diet alters glucocorticoid signaling and anxiety behavior in adulthood. Neuroscience 240:1–12. doi: 10.1016/j.neuroscience.2013.02.044 CrossRefPubMedGoogle Scholar
  19. 19.
    Boitard C, Maroun M, Tantot F, Cavaroc A, Sauvant J, Marchand A, Laye S, Capuron L et al (2015) Juvenile obesity enhances emotional memory and amygdala plasticity through glucocorticoids. J Neurosci 35(9):4092–4103. doi: 10.1523/jneurosci.3122-14.2015 CrossRefPubMedGoogle Scholar
  20. 20.
    Akbaraly TN, Brunner EJ, Ferrie JE, Marmot MG, Kivimaki M, Singh-Manoux A (2009) Dietary pattern and depressive symptoms in middle age. Br J Psychiatry 195(5):408–413. doi: 10.1192/bjp.bp.108.058925 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Sharma S, Fulton S (2013) Diet-induced obesity promotes depressive-like behaviour that is associated with neural adaptations in brain reward circuitry. Int J Obes 37(3):382–389. doi: 10.1038/ijo.2012.48 CrossRefGoogle Scholar
  22. 22.
    Abildgaard A, Solskov L, Volke V, Harvey BH, Lund S, Wegener G (2011) A high-fat diet exacerbates depressive-like behavior in the flinders sensitive line (FSL) rat, a genetic model of depression. Psychoneuroendocrinology 36(5):623–633. doi: 10.1016/j.psyneuen.2010.09.004 CrossRefPubMedGoogle Scholar
  23. 23.
    Roth TL, Sweatt JD (2011) Epigenetic marking of the BDNF gene by early-life adverse experiences. Horm Behav 59(3):315–320. doi: 10.1016/j.yhbeh.2010.05.005 CrossRefPubMedGoogle Scholar
  24. 24.
    Choy KH, De Visser Y, Nichols NR, Van Den Buuse M (2008) Combined neonatal stress and young-adult glucocorticoid stimulation in rats reduce BDNF expression in hippocampus: effects on learning and memory. Hippocampus 18(7):655–667. doi: 10.1002/hipo.20425 CrossRefPubMedGoogle Scholar
  25. 25.
    Polyakova M, Stuke K, Schuemberg K, Mueller K, Schoenknecht P, Schroeter ML (2015) Bdnf as a biomarker for successful treatment of mood disorders: a systematic & quantitative meta-analysis. J Affect Disord 174:432–440. doi: 10.1016/j.jad.2014.11.044 CrossRefPubMedGoogle Scholar
  26. 26.
    Yuksel C, Ongur D (2010) Magnetic resonance spectroscopy studies of glutamate-related abnormalities in mood disorders. Biol Psychiatry 68(9):785–794. doi: 10.1016/j.biopsych.2010.06.016 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Gao SF, Klomp A, Wu JL, Swaab DF, Bao AM (2013) Reduced GAD(65/67) immunoreactivity in the hypothalamic paraventricular nucleus in depression: a postmortem study. J Affect Disord 149(1–3):422–425. doi: 10.1016/j.jad.2012.12.003 CrossRefPubMedGoogle Scholar
  28. 28.
    Shikanai H, Kimura S, Togashi H (2013) Early life stress affects the serotonergic system underlying emotional regulation. Biol Pharm Bull 36(9):1392–1395CrossRefPubMedGoogle Scholar
  29. 29.
    Douglas LA, Varlinskaya EI, Spear LP (2004) Rewarding properties of social interactions in adolescent and adult male and female rats: impact of social versus isolate housing of subjects and partners. Dev Psychobiol 45(3):153–162. doi: 10.1002/dev.20025 CrossRefPubMedGoogle Scholar
  30. 30.
    Arcego DM, Krolow R, Lampert C, Noschang C, Ferreira AG, Scherer E, Wyse AT, Dalmaz C (2014) Isolation during the prepubertal period associated with chronic access to palatable diets: effects on plasma lipid profile and liver oxidative stress. Physiol Behav 124:23–32. doi: 10.1016/j.physbeh.2013.10.029 CrossRefPubMedGoogle Scholar
  31. 31.
    Lee B, Sur B, Park J, Kim SH, Kwon S, Yeom M, Shim I, Lee H et al (2013) Chronic administration of baicalein decreases depression-like behavior induced by repeated restraint stress in rats. Korean J Physiol Pharmacol 17(5):393–403. doi: 10.4196/kjpp.2013.17.5.393 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Porsolt RD, Bertin A, Blavet N, Deniel M, Jalfre M (1979) Immobility induced by forced swimming in rats: effects of agents which modify central catecholamine and serotonin activity. Eur J Pharmacol 57(2–3):201–210CrossRefPubMedGoogle Scholar
  33. 33.
    Arcego DM, Krolow R, Lampert C, Toniazzo AP, Berlitz C, Lazzaretti C, Schmitz F, Rodrigues AF et al (2016) Early life adversities or high fat diet intake reduce cognitive function and alter BDNF signaling in adult rats: interplay of these factors changes these effects. Int J Dev Neurosci 50:16–25. doi: 10.1016/j.ijdevneu.2016.03.001 CrossRefPubMedGoogle Scholar
  34. 34.
    Atkinson HC, Waddell BJ (1997) Circadian variation in basal plasma corticosterone and adrenocorticotropin in the rat: sexual dimorphism and changes across the estrous cycle. Endocrinology 138(9):3842–3848. doi: 10.1210/endo.138.9.5395 CrossRefPubMedGoogle Scholar
  35. 35.
    Couto-Pereira NS, Ferreira CF, Lampert C, Arcego DM, Toniazzo AP, Bernardi JR, Da Silva DC, Von Poser Toigo E et al (2016) Neonatal interventions differently affect maternal care quality and have sexually dimorphic developmental effects on corticosterone secretion. Int J Dev Neurosci 55:72–81. doi: 10.1016/j.ijdevneu.2016.10.001 CrossRefPubMedGoogle Scholar
  36. 36.
    Bogdanova OV, Kanekar S, D'anci KE, Renshaw PF (2013) Factors influencing behavior in the forced swim test. Physiol Behav 118:227–239. doi: 10.1016/j.physbeh.2013.05.012 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Slattery DA, Cryan JF (2012) Using the rat forced swim test to assess antidepressant-like activity in rodents. Nat Protoc 7(6):1009–1014. doi: 10.1038/nprot.2012.044 CrossRefPubMedGoogle Scholar
  38. 38.
    Borsini F, Meli A (1988) Is the forced swimming test a suitable model for revealing antidepressant activity? Psychopharmacology 94(2):147–160CrossRefPubMedGoogle Scholar
  39. 39.
    West AP (1990) Neurobehavioral studies of forced swimming: the role of learning and memory in the forced swim test. Prog Neuro-Psychopharmacol Biol Psychiatry 14(6):863–877CrossRefGoogle Scholar
  40. 40.
    Hong YP, Lee HC, Kim HT (2015) Treadmill exercise after social isolation increases the levels of NGF, BDNF, and synapsin I to induce survival of neurons in the hippocampus, and improves depression-like behavior. J Exerc Nutrition Biochem 19(1):11–18. doi: 10.5717/jenb.2015.19.1.11 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Ieraci A, Mallei A, Popoli M (2016) Social isolation stress induces anxious-depressive-like behavior and alterations of neuroplasticity-related genes in adult male mice. Neural Plast 2016:6212983. doi: 10.1155/2016/6212983 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Grillo L (2016) A possible role of anhedonia as common substrate for depression and anxiety. Depress Res Treat 2016:1598130. doi: 10.1155/2016/1598130 PubMedPubMedCentralGoogle Scholar
  43. 43.
    Gorwood P (2008) Neurobiological mechanisms of anhedonia. Dialogues Clin Neurosci 10(3):291–299PubMedPubMedCentralGoogle Scholar
  44. 44.
    Sheline YI, Wang PW, Gado MH, Csernansky JG, Vannier MW (1996) Hippocampal atrophy in recurrent major depression. Proc Natl Acad Sci U S A 93(9):3908–3913CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Kempermann G (2002) Regulation of adult hippocampal neurogenesis—implications for novel theories of major depression. Bipolar Disord 4(1):17–33CrossRefPubMedGoogle Scholar
  46. 46.
    Veena J, Srikumar BN, Mahati K, Raju TR, Shankaranarayana Rao BS (2011) Oxotremorine treatment restores hippocampal neurogenesis and ameliorates depression-like behaviour in chronically stressed rats. Psychopharmacology 217(2):239–253. doi: 10.1007/s00213-011-2279-3 CrossRefPubMedGoogle Scholar
  47. 47.
    Lu B, Pang PT, Woo NH (2005) The yin and yang of neurotrophin action. Nat Rev Neurosci 6(8):603–614. doi: 10.1038/nrn1726 CrossRefPubMedGoogle Scholar
  48. 48.
    Gomez-Palacio-Schjetnan A, Escobar ML (2013) Neurotrophins and synaptic plasticity. Curr Top Behav Neurosci 15:117–136. doi: 10.1007/7854_2012_231 CrossRefPubMedGoogle Scholar
  49. 49.
    Pittenger C, Duman RS (2008) Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology 33(1):88–109. doi: 10.1038/sj.npp.1301574 CrossRefPubMedGoogle Scholar
  50. 50.
    Czeh B, Lucassen PJ (2007) What causes the hippocampal volume decrease in depression? Are neurogenesis, glial changes and apoptosis implicated? Eur Arch Psychiatry Clin Neurosci 257(5):250–260. doi: 10.1007/s00406-007-0728-0 CrossRefPubMedGoogle Scholar
  51. 51.
    Anacker C, Zunszain PA, Carvalho LA, Pariante CM (2011) The glucocorticoid receptor: pivot of depression and of antidepressant treatment? Psychoneuroendocrinology 36(3):415–425. doi: 10.1016/j.psyneuen.2010.03.007 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Pariante CM (2009) Risk factors for development of depression and psychosis. Glucocorticoid receptors and pituitary implications for treatment with antidepressant and glucocorticoids. Ann N Y Acad Sci 1179:144–152. doi: 10.1111/j.1749-6632.2009.04978.x CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    O'keane V, Frodl T, Dinan TG (2012) A review of atypical depression in relation to the course of depression and changes in HPA axis organization. Psychoneuroendocrinology 37(10):1589–1599. doi: 10.1016/j.psyneuen.2012.03.009 CrossRefPubMedGoogle Scholar
  54. 54.
    Gold PW, Chrousos GP (2002) Organization of the stress system and its dysregulation in melancholic and atypical depression: high vs low CRH/NE states. Mol Psychiatry 7(3):254–275. doi: 10.1038/ CrossRefPubMedGoogle Scholar
  55. 55.
    Kempermann G, Kronenberg G (2003) Depressed new neurons—adult hippocampal neurogenesis and a cellular plasticity hypothesis of major depression. Biol Psychiatry 54(5):499–503CrossRefPubMedGoogle Scholar
  56. 56.
    Valtorta F, Pennuto M, Bonanomi D, Benfenati F (2004) Synaptophysin: leading actor or walk-on role in synaptic vesicle exocytosis? BioEssays 26(4):445–453. doi: 10.1002/bies.20012 CrossRefPubMedGoogle Scholar
  57. 57.
    Keith D, El-Husseini A (2008) Excitation control: balancing psd-95 function at the synapse. Front Mol Neurosci 1:4. doi: 10.3389/neuro.02.004.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    El-Husseini AE, Schnell E, Chetkovich DM, Nicoll RA, Bredt DS (2000) Psd-95 involvement in maturation of excitatory synapses. Science 290(5495):1364–1368PubMedGoogle Scholar
  59. 59.
    Schnell E, Sizemore M, Karimzadegan S, Chen L, Bredt DS, Nicoll RA (2002) Direct interactions between PSD-95 and stargazin control synaptic AMPA receptor number. Proc Natl Acad Sci U S A 99(21):13902–13907. doi: 10.1073/pnas.172511199 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Bredt DS, Nicoll RA (2003) AMPA receptor trafficking at excitatory synapses. Neuron 40(2):361–379CrossRefPubMedGoogle Scholar
  61. 61.
    Paul J, Gottmann K, Lessmann V (2001) NT-3 regulates BDNF-induced modulation of synaptic transmission in cultured hippocampal neurons. Neuroreport 12(12):2635–2639CrossRefPubMedGoogle Scholar
  62. 62.
    Je HS, Yang F, Zhou J, Lu B (2006) Neurotrophin 3 induces structural and functional modification of synapses through distinct molecular mechanisms. J Cell Biol 175(6):1029–1042. doi: 10.1083/jcb.200603061 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Je HS, Zhou J, Yang F, Lu B (2005) Distinct mechanisms for neurotrophin-3-induced acute and long-term synaptic potentiation. J Neurosci 25(50):11719–11729. doi: 10.1523/jneurosci.4087-05.2005 CrossRefPubMedGoogle Scholar
  64. 64.
    Frye MA, Tsai GE, Huggins T, Coyle JT, Post RM (2007) Low cerebrospinal fluid glutamate and glycine in refractory affective disorder. Biol Psychiatry 61(2):162–166. doi: 10.1016/j.biopsych.2006.01.024 CrossRefPubMedGoogle Scholar
  65. 65.
    Padovan CM, Guimaraes FS (2004) Antidepressant-like effects of NMDA-receptor antagonist injected into the dorsal hippocampus of rats. Pharmacol Biochem Behav 77(1):15–19CrossRefPubMedGoogle Scholar
  66. 66.
    Przegalinski E, Tatarczynska E, Deren-Wesolek A, Chojnacka-Wojcik E (1997) Antidepressant-like effects of a partial agonist at strychnine-insensitive glycine receptors and a competitive NMDA receptor antagonist. Neuropharmacology 36(1):31–37CrossRefPubMedGoogle Scholar
  67. 67.
    Erreger K, Dravid SM, Banke TG, Wyllie DJ, Traynelis SF (2005) Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles. J Physiol 563(pt 2):345–358. doi: 10.1113/jphysiol.2004.080028 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Karolewicz B, Maciag D, O'dwyer G, Stockmeier CA, Feyissa AM, Rajkowska G (2010) Reduced level of glutamic acid decarboxylase-67 kDa in the prefrontal cortex in major depression. Int J Neuropsychopharmacol 13(4):411–420. doi: 10.1017/s1461145709990587 CrossRefPubMedGoogle Scholar
  69. 69.
    Guidotti G, Calabrese F, Auletta F, Olivier J, Racagni G, Homberg J, Riva MA (2012) Developmental influence of the serotonin transporter on the expression of npas4 and GABAergic markers: modulation by antidepressant treatment. Neuropsychopharmacology 37(3):746–758. doi: 10.1038/npp.2011.252 CrossRefPubMedGoogle Scholar
  70. 70.
    Holm MM, Nieto-Gonzalez JL, Vardya I, Henningsen K, Jayatissa MN, Wiborg O, Jensen K (2011) Hippocampal GABAergic dysfunction in a rat chronic mild stress model of depression. Hippocampus 21(4):422–433. doi: 10.1002/hipo.20758 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Danusa Mar Arcego
    • 1
    • 2
  • Ana Paula Toniazzo
    • 1
  • Rachel Krolow
    • 1
  • Carine Lampert
    • 1
  • Carolina Berlitz
    • 1
  • Emily dos Santos Garcia
    • 1
  • Fabrício do Couto Nicola
    • 2
  • Juliana Bender Hoppe
    • 1
  • Mariana Maier Gaelzer
    • 1
  • Caroline Peres Klein
    • 1
  • Camilla Lazzaretti
    • 2
  • Carla Dalmaz
    • 1
    • 2
  1. 1.Programa de Pós-Graduação em Ciências Biológicas: Bioquímica/Departamento de Bioquímica, Instituto de Ciências Básicas da SaúdeUFRGSPorto AlegreBrazil
  2. 2.Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da SaúdeUFRGSPorto AlegreBrazil

Personalised recommendations