Skip to main content
Log in

Purinergic P2Y1 Receptors Control Rapid Expression of Plasma Membrane Processes in Hippocampal Astrocytes

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Astrocytes regulate neuronal activity and blood brain barrier through tiny plasma membrane branches or astrocytic processes (APs) making contact with synapses and brain vessels. Several transmitters released by astrocytes and exerting their action on several receptor classes expressed by astrocytes themselves influence their physiology. Here we found that APs are dynamically modulated by purines. In live imaging experiments carried out in rat hippocampal astrocytes, Gq-coupled P2Y1 receptor blockade with the selective antagonist MRS2179 (1 μM) or inhibition of its effector phospholipase C using U73122 (3 μM) produced APs retraction, while stimulation of the same receptor with the selective agonist 2MeSADP (100 μM) increased their number. Since astrocytes, among other transmitters, release ATP by several mechanisms including connexin hemichannels, we used the connexin hemichannel inhibitor carbenoxolone (100 μM) and APs retraction was observed. In our system we then measured expression or function of channels important for modulation of volume transmission and K+ buffering, aquaporin-4, and K+ inward rectifying (Kir) channels, respectively. Aquaporin-4 expression level did not change whereas, in whole-cell patch-clamp recordings performed to measure Kir current, we observed an increase in K+ current in all conditions where APs number was reduced. These data are supporting the idea of a dynamic modulation of astrocytic processes by purinergic signal, strengthening the role of purines in brain homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Araque A, Parpura V, Sanzgiri RP, Haydon PG (1998) Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons. Eur J Neurosci 10:2129–2142

    Article  CAS  PubMed  Google Scholar 

  2. Perea G, Navarrete M, Araque A (2009) Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 32:421–431

    Article  CAS  PubMed  Google Scholar 

  3. Cornell-Bell A, Finkbeiner, Cooper S (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science:470–473

  4. Verkhratsky A, Rodriguez JJ, Parpura V (2012) Calcium signalling in astroglia. Mol Cell Endocrinol 353:45–56

    Article  CAS  PubMed  Google Scholar 

  5. Bazargani N, Attwell D (2016) Astrocyte calcium signaling: the third wave. Nat Neurosci 19:182–189

    Article  CAS  PubMed  Google Scholar 

  6. Duan S, Anderson CM, Keung EC, Chen Y, Swanson RA (2003) P2X7 receptor-mediated release of excitatory amino acids from astrocytes. J Neurosci 23:1320–1328

    CAS  PubMed  Google Scholar 

  7. Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul JY, Takano H, Moss SJ et al (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310:113–116

    Article  CAS  PubMed  Google Scholar 

  8. Ye ZC, Wyeth MS, Baltan-Tekkok S, Ransom BR (2003) Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J Neurosci 23:3588–3596

    CAS  PubMed  Google Scholar 

  9. Parpura V, Scemes E, Spray DC (2004) Mechanisms of glutamate release from astrocytes: gap junction “hemichannels”, purinergic receptors and exocytotic release. Neurochem Int 45:259–264

    Article  CAS  PubMed  Google Scholar 

  10. Verkhratsky A, Nedergaard M (2014) Astroglial cradle in the life of the synapse. Philos Trans R Soc Lond B Biol Sci 369:20130595

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nagelhus EA, Mathiisen TM, Ottersen OP (2004) Aquaporin-4 in the central nervous system: cellular and subcellular distribution and coexpression with KIR4.1. Neuroscience 129:905–913

    Article  CAS  PubMed  Google Scholar 

  12. Strohschein S, Huttmann K, Gabriel S, Binder DK, Heinemann U, Steinhauser C (2011) Impact of aquaporin-4 channels on K+ buffering and gap junction coupling in the hippocampus. Glia 59:973–980

    Article  PubMed  Google Scholar 

  13. Ghezali G, Dallerac G, Rouach N (2015) Perisynaptic astroglial processes: dynamic processors of neuronal information. Brain Struct Funct

  14. Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7:41–53

    Article  CAS  PubMed  Google Scholar 

  15. Derouiche A, Frotscher M (2001) Peripheral astrocyte processes: monitoring by selective immunostaining for the actin-binding ERM proteins. Glia 36:330–341

    Article  CAS  PubMed  Google Scholar 

  16. Benediktsson AM, Schachtele SJ, Green SH, Dailey ME (2005) Ballistic labeling and dynamic imaging of astrocytes in organotypic hippocampal slice cultures. J Neurosci Methods 141:41–53

    Article  PubMed  Google Scholar 

  17. Cornell-Bell AH, Thomas PG, Smith SJ (1990) The excitatory neurotransmitter glutamate causes filopodia formation in cultured hippocampal astrocytes. Glia 3:322–334

    Article  CAS  PubMed  Google Scholar 

  18. Cerbai F, Lana D, Nosi D, Petkova-Kirova P, Zecchi S, Brothers HM, Wenk GL, Giovannini MG (2012) The neuron-astrocyte-microglia triad in normal brain ageing and in a model of neuroinflammation in the rat hippocampus. PLoS One 7, e45250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rodriguez JJ, Yeh CY, Terzieva S, Olabarria M, Kulijewicz-Nawrot M, Verkhratsky A (2014) Complex and region-specific changes in astroglial markers in the aging brain. Neurobiol Aging 35:15–23

    Article  CAS  PubMed  Google Scholar 

  20. Tynan RJ, Beynon SB, Hinwood M, Johnson SJ, Nilsson M, Woods JJ, Walker FR (2013) Chronic stress-induced disruption of the astrocyte network is driven by structural atrophy and not loss of astrocytes. Acta Neuropathol 126:75–91

    Article  CAS  PubMed  Google Scholar 

  21. Braak H, de Vos RA, Jansen EN, Bratzke H, Braak E (1998) Neuropathological hallmarks of Alzheimer’s and Parkinson’s diseases. Prog Brain Res 117:267–285

    Article  CAS  PubMed  Google Scholar 

  22. Anderson CM, Bergher JP, Swanson RA (2004) ATP-induced ATP release from astrocytes. J Neurochem 88:246–256

    Article  CAS  PubMed  Google Scholar 

  23. Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24:509–581

    CAS  PubMed  Google Scholar 

  24. Fumagalli M, Brambilla R, D’Ambrosi N, Volonte C, Matteoli M, Verderio C, Abbracchio MP (2003) Nucleotide-mediated calcium signaling in rat cortical astrocytes: role of P2X and P2Y receptors. Glia 43:218–203

    Article  PubMed  Google Scholar 

  25. Bal-Price A, Moneer Z, Brown GC (2002) Nitric oxide induces rapid, calcium-dependent release of vesicular glutamate and ATP from cultured rat astrocytes. Glia 40:312–323

    Article  PubMed  Google Scholar 

  26. Imura Y, Morizawa Y, Komatsu R, Shibata K, Shinozaki Y, Kasai H, Moriishi K, Moriyama Y et al (2013) Microglia release ATP by exocytosis. Glia 61:1320–1330

    Article  PubMed  Google Scholar 

  27. Lalo U, Palygin O, Rasooli-Nejad S, Andrew J, Haydon PG, Pankratov Y (2014) Exocytosis of ATP from astrocytes modulates phasic and tonic inhibition in the neocortex. PLoS Biol 12, e1001747

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pangrsic T, Potokar M, Stenovec M, Kreft M, Fabbretti E, Nistri A, Pryazhnikov E, Khiroug L et al (2007) Exocytotic release of ATP from cultured astrocytes. J Biol Chem 282:28749–28758

    Article  CAS  PubMed  Google Scholar 

  29. Liu HT, Sabirov RZ, Okada Y (2008) Oxygen-glucose deprivation induces ATP release via maxi-anion channels in astrocytes. Purinergic Signal 4:147–154

    Article  CAS  PubMed  Google Scholar 

  30. Liu HT, Toychiev AH, Takahashi N, Sabirov RZ, Okada Y (2008) Maxi-anion channel as a candidate pathway for osmosensitive ATP release from mouse astrocytes in primary culture. Cell Res 18:558–565

    Article  CAS  PubMed  Google Scholar 

  31. Sabirov RZ, Okada Y (2005) ATP release via anion channels. Purinergic Signal 1:311–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lazarowski ER (2012) Vesicular and conductive mechanisms of nucleotide release. Purinergic Signal 8:359–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Suadicani SO, Brosnan CF, Scemes E (2006) P2X7 receptors mediate ATP release and amplification of astrocytic intercellular Ca2+ signaling. J Neurosci 26:1378–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cotrina ML, Lin JH, Lopez-Garcia JC, Naus CC, Nedergaard M (2000) ATP-mediated glia signaling. J Neurosci 20:2835–2844

    CAS  PubMed  Google Scholar 

  35. Stout CE, Costantin JL, Naus CC, Charles AC (2002) Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J Biol Chem 277:10482–10488

    Article  CAS  PubMed  Google Scholar 

  36. Torres A, Wang F, Xu Q, Fujita T, Dobrowolski R, Willecke K, Takano T, Nedergaard M (2012) Extracellular Ca(2)(+) acts as a mediator of communication from neurons to glia. Sci Signal 5:ra8

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mutafova-Yambolieva VN, Durnin L (2014) The purinergic neurotransmitter revisited: a single substance or multiple players? Pharmacol Ther 144:162–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Queiroz G, Gebicke-Haerter PJ, Schobert A, Starke K, von Kugelgen I (1997) Release of ATP from cultured rat astrocytes elicited by glutamate receptor activation. Neuroscience 78:1203–1208

    Article  CAS  PubMed  Google Scholar 

  39. Guthrie PB, Knappenberger J, Segal M, Bennett MV, Charles AC, Kater SB (1999) ATP released from astrocytes mediates glial calcium waves. J Neurosci 19:520–528

    CAS  PubMed  Google Scholar 

  40. Stout MA, Raeymaekers L, De Smedt H, Casteels R (2002) Characterization of Ca2+ release from heterogeneous Ca2+ stores in sarcoplasmic reticulum isolated from arterial and gastric smooth muscle. Can J Physiol Pharmacol 80:588–603

    Article  CAS  PubMed  Google Scholar 

  41. Verderio C, Matteoli M (2001) ATP mediates calcium signaling between astrocytes and microglial cells: modulation by IFN-gamma. J Immunol 166:6383–6391

    Article  CAS  PubMed  Google Scholar 

  42. Burnstock G (1996) P2 purinoceptors: historical perspective and classification. Ciba Found Symp 198:1–28, discussion 29–34

    CAS  PubMed  Google Scholar 

  43. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    Article  CAS  PubMed  Google Scholar 

  44. Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M et al (2006) International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58:281–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Abbracchio MP, Ceruti S (2006) Roles of P2 receptors in glial cells: focus on astrocytes. Purinergic Signal 2:595–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhu Y, Kimelberg HK (2001) Developmental expression of metabotropic P2Y(1) and P2Y(2) receptors in freshly isolated astrocytes from rat hippocampus. J Neurochem 77:530–541

    Article  CAS  PubMed  Google Scholar 

  47. Zhu Y, Kimelberg HK (2004) Cellular expression of P2Y and beta-AR receptor mRNAs and proteins in freshly isolated astrocytes and tissue sections from the CA1 region of P8-12 rat hippocampus. Brain Res Dev Brain Res 148:77–87

    Article  CAS  PubMed  Google Scholar 

  48. Olsen ML, Campbell SL, Sontheimer H (2007) Differential distribution of Kir4.1 in spinal cord astrocytes suggests regional differences in K+ homeostasis. J Neurophysiol 98:786–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Olsen ML, Higashimori H, Campbell SL, Hablitz JJ, Sontheimer H (2006) Functional expression of Kir4.1 channels in spinal cord astrocytes. Glia 53:516–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pascual O, Ben Achour S, Rostaing P, Triller A, Bessis A (2012) Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc Natl Acad Sci U S A 109:E197–205

    Article  CAS  PubMed  Google Scholar 

  51. Tanaka M, Shih PY, Gomi H, Yoshida T, Nakai J, Ando R, Furuichi T, Mikoshiba K et al (2013) Astrocytic Ca2+ signals are required for the functional integrity of tripartite synapses. Mol Brain 6:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shigetomi E, Kracun S, Sofroniew MV, Khakh BS (2010) A genetically targeted optical sensor to monitor calcium signals in astrocyte processes. Nat Neurosci 13:759–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pulcinelli FM, Gresele P, Bonuglia M, Gazzaniga PP (1998) Evidence for separate effects of U73122 on phospholipase C and calcium channels in human platelets. Biochem Pharmacol 56:1481–1484

    Article  CAS  PubMed  Google Scholar 

  54. Molotkov D, Zobova S, Arcas JM, Khiroug L (2013) Calcium-induced outgrowth of astrocytic peripheral processes requires actin binding by Profilin-1. Cell Calcium 53:338–348

    Article  CAS  PubMed  Google Scholar 

  55. Auli M, Martinez E, Gallego D, Opazo A, Espin F, Marti-Gallostra M, Jimenez M, Clave P (2008) Effects of excitatory and inhibitory neurotransmission on motor patterns of human sigmoid colon in vitro. Br J Pharmacol 155:1043–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Aslam M, Sedding D, Koshty A, Santoso S, Schulz R, Hamm C, Gunduz D (2013) Nucleoside triphosphates inhibit ADP, collagen, and epinephrine-induced platelet aggregation: role of P2Y(1) and P2Y(1)(2) receptors. Thromb Res 132:548–557

    Article  CAS  PubMed  Google Scholar 

  57. Nichols CG, Lopatin AN (1997) Inward rectifier potassium channels. Annu Rev Physiol 59:171–191

    Article  CAS  PubMed  Google Scholar 

  58. Olsen ML, Sontheimer H (2008) Functional implications for Kir4.1 channels in glial biology: from K+ buffering to cell differentiation. J Neurochem 107:589–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Simard M, Nedergaard M (2004) The neurobiology of glia in the context of water and ion homeostasis. Neuroscience 129:877–896

    Article  CAS  PubMed  Google Scholar 

  60. Newman EA (1986) High potassium conductance in astrocyte endfeet. Science 233:453–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Newman EA, Frambach DA, Odette LL (1984) Control of extracellular potassium levels by retinal glial cell K+ siphoning. Science 225:1174–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jansen LA, Uhlmann EJ, Crino PB, Gutmann DH, Wong M (2005) Epileptogenesis and reduced inward rectifier potassium current in tuberous sclerosis complex-1-deficient astrocytes. Epilepsia 46:1871–1880

    Article  CAS  PubMed  Google Scholar 

  63. Bai D, del Corsso C, Srinivas M, Spray DC (2006) Block of specific gap junction channel subtypes by 2-aminoethoxydiphenyl borate (2-APB). J Pharmacol Exp Ther 319:1452–1458

    Article  CAS  PubMed  Google Scholar 

  64. Pannasch U, Freche D, Dallerac G, Ghezali G, Escartin C, Ezan P, Cohen-Salmon M, Benchenane K et al (2014) Connexin 30 sets synaptic strength by controlling astroglial synapse invasion. Nat Neurosci 17:549–558

    Article  CAS  PubMed  Google Scholar 

  65. Oliet SH, Bonfardin VD (2010) Morphological plasticity of the rat supraoptic nucleus—cellular consequences. Eur J Neurosci 32:1989–1994

    Article  PubMed  Google Scholar 

  66. Hayashi MK, Yasui M (2015) The transmembrane transporter domain of glutamate transporters is a process tip localizer. Sci Rep 5:9032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gordon GR, Baimoukhametova DV, Hewitt SA, Rajapaksha WR, Fisher TE, Bains JS (2005) Norepinephrine triggers release of glial ATP to increase postsynaptic efficacy. Nat Neurosci 8:1078–1086

    Article  CAS  PubMed  Google Scholar 

  68. Rodrigues RJ, Tome AR, Cunha RA (2015) ATP as a multi-target danger signal in the brain. Front Neurosci 9:148

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the International Promotion of Young Researchers “Montalcini Program” grant from the Italian Ministry of Education, University and Research (to MC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariangela Chisari.

Ethics declarations

All animal experimental procedures were carried out in accordance with directives of Italian and EU regulations for care and use of experimental animals and were approved by the Institutional Animal Care and Use Committee of the University of Catania.

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 366 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chisari, M., Scuderi, A., Ciranna, L. et al. Purinergic P2Y1 Receptors Control Rapid Expression of Plasma Membrane Processes in Hippocampal Astrocytes. Mol Neurobiol 54, 4081–4093 (2017). https://doi.org/10.1007/s12035-016-9955-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9955-6

Keywords

Navigation