Growth, characterization and theoretical parameter study of benzimidazole L-tartrate single crystal: a nonlinear optical material

Abstract

Good quality, non-hygroscopic and transparent crystals of organic benzimidazole L-tartrate (BILT) were grown successfully with a slow evaporation method. The powder X-ray diffraction patterns were analysed with Powder-X software which confirms the monoclinic crystal structure. The charge distribution, transport mechanism and intramolecular bonding mechanism have been investigated with the help of natural bond orbital analysis and molecular electrostatic potential diagram. The presence of various functional groups was confirmed with the help of FTIR–ATR response. The values were compared with the values obtained from computational output with the help of Gaussian software. The crystalline quality was further analysed with UV–visible spectral analysis. The lower cut-off wavelength of 288 nm and further optical parameters like band gap, change in refractive index with wavelength and extinction coefficient values support the usage of the material for optoelectronic devices. With band gap of 4.2 eV, the reactivity of material has been observed with the HOMO and LUMO study. The TGA and DTA analyses confirm the thermal stability of the material up to 192°C. The lower dielectric constant and lower dielectric loss support the usage of the material for an NLO device. The hopping motion and Joncher’s power law parameters were also obtained. The material decomposes in single-phase which observes in a range of 180–250°C. The second harmonic generation capacity of the material is found to be 2.69 times that of the KDP with the help of Kurtz and Perry powder technique.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

References

  1. 1

    Bolla G, Dong H, Zhen Y, Wang Z and Hu W 2016 Sci. China Mater. 59 523

    CAS  Article  Google Scholar 

  2. 2

    Zhu W, Zheng R, Fu X, Fu H, Shi Q, Zhen Y et al 2015 Angew. Chem. Int. Ed. 54 785

    Google Scholar 

  3. 3

    Thirumurugan R, Babu B, Anitha K and Chandrasekaran J 2017 J. Mol. Struct. 1149 48

  4. 4

    Jhulki S, Seth S, Ghosh A, Chow T J and Moorthy J N 2016 ACS Appl. Mater. Interfaces 8 1527

    CAS  Article  Google Scholar 

  5. 5

    Peramaiyan G, Pandi P, Sornamurthy B M, Bhagavannarayana G and Kumar R M 2012 Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 95 310

    CAS  Article  Google Scholar 

  6. 6

    Huang J J, Hung Y H, Ting P L, Tsai Y N, Gao H J, Chiu T L et al 2016 Org. Lett. 18 672

    CAS  Article  Google Scholar 

  7. 7

    Gao X, Liu B, Jin S and Wang D 2015 J. Mol. Struct. 1093 82

    CAS  Article  Google Scholar 

  8. 8

    George M, Balaji J, Sajan D, Dominic P, Philip R and Vinitha G 2020 J. Photochem. Photobiol. A: Chem. 393 Article ID: 112413

  9. 9

    Jin S, Lu X H, Wang D and Chen W 2012 J. Mol. Struct. 1010 17

    CAS  Article  Google Scholar 

  10. 10

    Rajalakshmi M, Indirajith R, Ramasamy P and Gopalakrishnan R 2011 Mol. Cryst. Liq. Cryst. 548 126

    CAS  Article  Google Scholar 

  11. 11

    Raval Hiral, Parekh Bharat, Parikh Ketan and Joshi Mihir 2019 Adv. Condens. Matter Phys. 2019 Article ID: 3853215

  12. 12

    Fomun Z T and Ifeadike P N J 1985 J. Heterocycl. Chem. 22 1611

    Google Scholar 

  13. 13

    Tarasiewicz J, Gagor A, Jakubas R, Kulicka B and Baran J 2011 J. Mol. Struct. 1002 28

    CAS  Article  Google Scholar 

  14. 14

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R et al 2016 Gaussian 09 Software (Wallingford, CT: Gaussian, Inc.)

  15. 15

    Chengmin Ji, Tianliang Chen, Zhihua Sun, Yan Ge, Wenxiong Lin, Junhua Luo et al 2013 CrystEngComm 15 2157

    CAS  Article  Google Scholar 

  16. 16

    Socrates G 1980 Infrared characteristic group frequencies (New York: John Wiley and Sons)

    Google Scholar 

  17. 17

    Bellamy L J 1980 The infrared spectra of complex molecules (London: Chapman and Hall)

    Google Scholar 

  18. 18

    Lin-Vien D, Clothup N B, Fateley W G and Grasselli J G 1991 The handbook of infrared and Raman characteristic frequencies of organic molecules (New York: Academic Press)

    Google Scholar 

  19. 19

    Dmitriev V G, Gurzadyan G G and Nikoyosyan D N 1999 Handbook of nonlinear optical crystals 3rd edn (Berlin: Springer)

  20. 20

    Krishnan P, Gayathri K, Bhagavannarayana G, Jayaramakrishna V, Gunasekaran S and Anbalagan G 2013 Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 112 152

    CAS  Article  Google Scholar 

  21. 21

    Vijayan N, Ramesh Babu R, Gopalakrishnan R, Dhanuskodi S and Ramasamy P 2002 J. Cryst. Growth 236 407

    CAS  Article  Google Scholar 

  22. 22

    Tauc J 1974 Amorphous and liquid semiconductors (New York: Plenum)

    Google Scholar 

  23. 23

    Mott N F and Gurney R W 1940 Electronic processes in ionic crystals 2nd edn (London: Oxford)

  24. 24

    Sangeetha V, Gayathiri K, Krishnan P, Sivakumar N, Kanagathara N and Anbalagan G 2014 J. Cryst. Growth 389 30

    CAS  Article  Google Scholar 

  25. 25

    Srinivasaraghvan R, Thamaraikannan S, Seshadri S and Gnanasambandan T 2015 Spectrochim. Acta A 137 1194

    Article  Google Scholar 

  26. 26

    Khalid M, Ullah M A, Adeel M, Usman Khan M, Nawaz Tahir M and Carmo Braga A A 2019 J. Saudi Chem. Soc. 23 546

    CAS  Article  Google Scholar 

  27. 27

    Mrouesh M, Daher C, Hariri E, Demirdjian S, Isber S, Choi E S et al 2015 Chem.-Biol. Interact. 231 53

    Article  Google Scholar 

  28. 28

    Venkatesh Nampally, Naveen Baindla, Venugopal Abbu, Gangadhari Suresh, Varukolu Mahipal, Palnati Manojkumar et al 2019 J. Mol. Struct. 1196 462

    Article  Google Scholar 

  29. 29

    Jug K and Maksic Z B 1991 Theoretical model of chemical bonding (Berlin, Heidelberg: Springer) p 235

    Google Scholar 

  30. 30

    Fliszar S 1983 Charge distribution and chemical effects (New York: Springer-Verlag)

    Google Scholar 

  31. 31

    Smith P E and Pettit B M 1991 J. Am. Chem. Soc. 113 6029

    CAS  Article  Google Scholar 

  32. 32

    Murray J S and Sen K 1996 Molecular electrostatic potentials (Amsterdam: Elsevier)

    Google Scholar 

  33. 33

    Scrocco E, Tomasi J and Lowdin P 1978 Advances in quantum chemistry (New York: Academic Press)

    Google Scholar 

  34. 34

    Sponer J and Hobza P 1996 Int. J. Quantum Chem. 57 959

    CAS  Article  Google Scholar 

  35. 35

    Prasad N V, Prasad G, Bhimasankaran T, Suryanarayana S V and Kumar G S 1969 Indian J. Pure Appl. Phys. 14 639

    Google Scholar 

  36. 36

    Syed K, Babu S, Peramaiyan G, Nizam Mohideem M and Mohan R 2015 J. Therm. Anal. Calorim. 120 1337

    Article  Google Scholar 

  37. 37

    Kremar F and Schoenhals A 2012 Broadband dielectric spectroscopy (Berlin: Springer)

    Google Scholar 

  38. 38

    Jonscher A K 1983 Dielectric relaxation in solids (London: Chelsea Dielectrics Press)

    Google Scholar 

  39. 39

    Jonscher A K 1977 Nature 267 673

    CAS  Article  Google Scholar 

  40. 40

    Kurtz S K and Perry T T 1968 J. Appl. Phys. 39 3798

    CAS  Article  Google Scholar 

  41. 41

    Krishnakumar V, Manohar S, Nagalakshmi R, Piasecki M, Kityk I V and Bragiel P 2009 Eur. J. Appl. Phys. 47 30701

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to B B Parekh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Raval, H., Raval, P.S., Parekh, B.B. et al. Growth, characterization and theoretical parameter study of benzimidazole L-tartrate single crystal: a nonlinear optical material. Bull Mater Sci 44, 38 (2021). https://doi.org/10.1007/s12034-020-02320-2

Download citation

Keywords

  • Crystal growth
  • organic nonlinear optical material
  • second harmonic generation
  • DFT
  • UV–visible