Abstract
Ginger extract (GE) was employed for the reduction of graphene oxide (GO) by refluxing in an aqueous medium with different reduction times. The reduced GO was characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy. X-ray photoelectron spectroscopy (XPS) to investigate structural, chemical bonding and functional groups, respectively. The XRD results reveal that the maximum reduction GO was observed at 12 h. The scanning electron microscopy (SEM) images showed the formation of a thin sheet-like structure for ginger reduced graphene oxide (GRG12). The electrochemical properties of GRG samples were further evaluated by cyclic voltammetry (CV), galvanostatic charge–discharge (GCD) and electrochemical impedance spectroscopy (EIS). The GRG12 showed the highest specific capacitance value of 99.61 F g−1 at a scan rate of 5 mV s−1 with cycling stability of 98% after 1000 cycles. This study demonstrates the potential of GE for the reduction of GO and efficiency of the reduced product for application in supercapacitors.
This is a preview of subscription content, access via your institution.









References
- 1
Yi M and Shen Z A 2015 J. Mater. Chem. A 3 11700
- 2
Yang W, Chen G, Shi Z, Liu C-C, Zhang L, Xie G et al 2013 Nat. Mater. 12 792
- 3
Gao X, Jang J and Nagase S 2010 J. Phys. Chem. C 114 832
- 4
Matsumoto Y, Koinuma M, Kim S Y, Watanabe Y, Taniguchi T, Hatakeyama K et al 2010 ACS Appl. Mater. Interfaces 2 3461
- 5
Chua C K and Pumera M 2014 Chem. Soc. Rev. 43 291
- 6
De Silva K K H, Huang H H, Joshi R K and Yoshimura M 2017 Carbon NY 119 190
- 7
Agharkar M, Kochrekar S, Hidouri S and Azeez M A 2014 Mater. Res. Bull. 59 323
- 8
Shubha P, Namratha K, Aparna H S, Ashok N R, Mustak M S, Chatterjee J et al 2017 Mater. Chem. Phys. 198 66
- 9
Wang J, Gao Z, Li Z, Wang B, Yan Y, Liu Q et al 2011 J. Solid State Chem. 184 1421
- 10
Bo Z, Shuai X, Mao S, Yang H, Qian J, Chen J et al 2015 Sci. Rep. 4 4684
- 11
Manchala S, Tandava V S R K, Jampaiah D, Bhargava S K and Shanker V 2019 ACS Sustain. Chem. Eng. 7 11612
- 12
Zengin K B, Durmus Z and Sevgi E 2019 Int. J. Hydrog. Energy 48 26322
- 13
Lingaraju K, Raja N H, Nagaraju G and Nagabhushana H 2019 Biotechnol. Rep. 24 e00376
- 14
Wang Y, Shi Z and Yin J 2011 ACS Appl. Mater. Interfaces 3 1127
- 15
Bhattacharya G, Sas S, Wadhwa S, Mathur A, McLaughlin J and Roy S S 2017 RSC Adv. 7 26680
- 16
Khan M, Al-Marri A H, Khan M, Shaik M R, Mohri N, Adil S F et al 2015 Nanoscale Res. Lett. 10 281
- 17
Hou D, Liu Q, Cheng H, Zhang H and Wang S 2017 J. Solid State Chem. 246 351
- 18
Begum H, Ahmed M S, Cho S and Jeon S 2017 J. Power Sources 372 116
- 19
Kartick B, Srivastava S K and Srivastava I 2013 J. Nanosci. Nanotechnol. 13 4320
- 20
Haghighi B and Tabrizi M A 2013 RSC Adv. 3 13365
- 21
Tavakoli F, Salavati-Niasari M, Badiei A and Mohandes F 2015 Mater. Res. Bull. 63 51
- 22
Mekuriya W and Mekibib B 2018 J. Vet. Sci. Technol. 9 519
- 23
Shakya S R 2015 Int. J. Chem. Stud. 3 83
- 24
Yeh H, Chuang C, Chen H, Wan C, Chen T and Lin L 2014 LWT - Food Sci. Technol. 55 329
- 25
Sharma E, Sharma R, Singh K K and Sharma G 2000 Mt. Res. Dev. 20 108
- 26
El-Refai A A, Ghoniem G A, El-Khateeb A Y and Hassaan M M 2018 J. Nanostructure Chem. 8 71
- 27
Velmurugan P, Anbalagan K, Manosathyadevan M, Lee K J, Cho M, Lee S M et al 2014 Bioprocess Biosyst. Eng. 37 1935
- 28
Rai S, Bhujel R and Swain B P 2018 IEEE Electron Device Kolkata Conference (EDKCON), p 489
- 29
Sinha S, Devi N A, Nongthombam S, Bhujel R, Rai S, Sarkar G et al 2020 Diam. Relat. Mater. 107 107885.
- 30
Rabina Bhujel, Sadhna Rai, Utpal Deka and Bibhu P Swain 2019 J. Alloys Compd. 792 250
- 31
Yap P L, Kabiri S, Auyoong Y L, Tran D N H and Losic D 2019 ACS Omega 4 19787
- 32
Liu P, Huang Y and Wang L 2013 Mater. Lett. 91 125
- 33
Ossonon B D and Bélanger D 2017 RSC Adv. 7 27224
- 34
Ganguly A, Sharma S, Papakonstantinou P and Hamilton J 2011 J. Phys. Chem. C 115 17009
- 35
Dave K, Park K H and Dhayal M 2015 RSC Adv. 5 95657
- 36
Kudin K N, Ozbas B, Schniepp H C, Prud’homme R K, Aksay I A and Car R 2008 Nano Lett. 8 36
- 37
Dubale A A, Su W N, Tamirat A G, Pan C J, Aragaw B A, Chen H M et al 2014 J. Mater. Chem. A 2 18383
- 38
Chettri P, Vendamani V S, Tripathi A, Pathak A P and Tiwari A 2016 Appl. Surf. Sci. 362 221
- 39
Khanra P, Kuila T, Kim N H, Bae S H, Yu D and Lee J H 2012 Chem. Eng. J. 183 526
- 40
Bhujel R, Rai S and Swain B P 2019 Appl. Nanosci. 9 1319
- 41
Johra F T, Lee J W and Jung W G 2014 J. Ind. Eng. Chem. 20 2883
- 42
Lei Y, Tang Z, Liao R and Guo B 2011 Green Chem. 13 1655
- 43
Khan M, Al-Marri A H, Khan M, Mohri N, Adil S F, Al-Warthan A et al 2014 RSC Adv. 4 24119
- 44
Tohma H, Gülçin İ, Bursal E, Gören A C, Alwasel S H and Köksal E 2017 J. Food Meas. Charact. 11 556
- 45
Jiang L, Luo D, Lu X, Zhang Q Y, Cai F and Che J 2018 Colloids Surf. A: Physiochem. Eng. Asp. 555 630
- 46
Rajagopalan B and Chung J S 2014 Nanoscale Res. Lett. 9 535
- 47
Nasir S, Hussein M Z, Zainal Z and Yusof N A 2019 J. Nanomater. https://doi.org/10.1155/2019/1970365
- 48
Cui X, Lv R, Sagar R U R, Liu C and Zhang Z 2015 Electrochim. Acta 169 342
- 49
Rai S, Bhujel R, Biswas J and Swain B P 2019 Ceram. Int. 45 14136
Acknowledgements
We sincerely acknowledge UGC-DAE-CSR, Indore (ref: CSR-IC-MSR-07/CRS-215/2017-18/1296) and Pai Endowment Fund (ref: SMU/ENDOW/2016-17/292/002) for providing financial support to Miss Sadhna Rai and Miss Rabina Bhujel, respectively.
Author information
Affiliations
Corresponding author
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Rai, S., Bhujel, R., Biswas, J. et al. Biocompatible synthesis of rGO from ginger extract as a green reducing agent and its supercapacitor application. Bull Mater Sci 44, 40 (2021). https://doi.org/10.1007/s12034-020-02318-w
Received:
Accepted:
Published:
Keywords
- Reflux
- ginger extract (GE)
- cyclic voltammetry
- cycling stability
- supercapacitor