Biocompatible synthesis of rGO from ginger extract as a green reducing agent and its supercapacitor application

Abstract

Ginger extract (GE) was employed for the reduction of graphene oxide (GO) by refluxing in an aqueous medium with different reduction times. The reduced GO was characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy. X-ray photoelectron spectroscopy (XPS) to investigate structural, chemical bonding and functional groups, respectively. The XRD results reveal that the maximum reduction GO was observed at 12 h. The scanning electron microscopy (SEM) images showed the formation of a thin sheet-like structure for ginger reduced graphene oxide (GRG12). The electrochemical properties of GRG samples were further evaluated by cyclic voltammetry (CV), galvanostatic charge–discharge (GCD) and electrochemical impedance spectroscopy (EIS). The GRG12 showed the highest specific capacitance value of 99.61 F g−1 at a scan rate of 5 mV s−1 with cycling stability of 98% after 1000 cycles. This study demonstrates the potential of GE for the reduction of GO and efficiency of the reduced product for application in supercapacitors.

This is a preview of subscription content, access via your institution.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Scheme 2
Figure 5
Figure 6
Figure 7

References

  1. 1

    Yi M and Shen Z A 2015 J. Mater. Chem. A 3 11700

    CAS  Article  Google Scholar 

  2. 2

    Yang W, Chen G, Shi Z, Liu C-C, Zhang L, Xie G et al 2013 Nat. Mater. 12 792

    CAS  Article  Google Scholar 

  3. 3

    Gao X, Jang J and Nagase S 2010 J. Phys. Chem. C 114 832

    CAS  Article  Google Scholar 

  4. 4

    Matsumoto Y, Koinuma M, Kim S Y, Watanabe Y, Taniguchi T, Hatakeyama K et al 2010 ACS Appl. Mater. Interfaces 2 3461

    CAS  Article  Google Scholar 

  5. 5

    Chua C K and Pumera M 2014 Chem. Soc. Rev. 43 291

    CAS  Article  Google Scholar 

  6. 6

    De Silva K K H, Huang H H, Joshi R K and Yoshimura M 2017 Carbon NY 119 190

    Article  CAS  Google Scholar 

  7. 7

    Agharkar M, Kochrekar S, Hidouri S and Azeez M A 2014 Mater. Res. Bull. 59 323

    CAS  Article  Google Scholar 

  8. 8

    Shubha P, Namratha K, Aparna H S, Ashok N R, Mustak M S, Chatterjee J et al 2017 Mater. Chem. Phys. 198 66

    CAS  Article  Google Scholar 

  9. 9

    Wang J, Gao Z, Li Z, Wang B, Yan Y, Liu Q et al 2011 J. Solid State Chem. 184 1421

    CAS  Article  Google Scholar 

  10. 10

    Bo Z, Shuai X, Mao S, Yang H, Qian J, Chen J et al 2015 Sci. Rep. 4 4684

    Article  CAS  Google Scholar 

  11. 11

    Manchala S, Tandava V S R K, Jampaiah D, Bhargava S K and Shanker V 2019 ACS Sustain. Chem. Eng. 7 11612

    CAS  Article  Google Scholar 

  12. 12

    Zengin K B, Durmus Z and Sevgi E 2019 Int. J. Hydrog. Energy 48 26322

    Article  CAS  Google Scholar 

  13. 13

    Lingaraju K, Raja N H, Nagaraju G and Nagabhushana H 2019 Biotechnol. Rep. 24 e00376

    CAS  Article  Google Scholar 

  14. 14

    Wang Y, Shi Z and Yin J 2011 ACS Appl. Mater. Interfaces 3 1127

    CAS  Article  Google Scholar 

  15. 15

    Bhattacharya G, Sas S, Wadhwa S, Mathur A, McLaughlin J and Roy S S 2017 RSC Adv. 7 26680

    CAS  Article  Google Scholar 

  16. 16

    Khan M, Al-Marri A H, Khan M, Shaik M R, Mohri N, Adil S F et al 2015 Nanoscale Res. Lett. 10 281

    Article  CAS  Google Scholar 

  17. 17

    Hou D, Liu Q, Cheng H, Zhang H and Wang S 2017 J. Solid State Chem. 246 351

    CAS  Article  Google Scholar 

  18. 18

    Begum H, Ahmed M S, Cho S and Jeon S 2017 J. Power Sources 372 116

    CAS  Article  Google Scholar 

  19. 19

    Kartick B, Srivastava S K and Srivastava I 2013 J. Nanosci. Nanotechnol. 13 4320

    CAS  Article  Google Scholar 

  20. 20

    Haghighi B and Tabrizi M A 2013 RSC Adv. 3 13365

    CAS  Article  Google Scholar 

  21. 21

    Tavakoli F, Salavati-Niasari M, Badiei A and Mohandes F 2015 Mater. Res. Bull. 63 51

    CAS  Article  Google Scholar 

  22. 22

    Mekuriya W and Mekibib B 2018 J. Vet. Sci. Technol. 9 519

    Google Scholar 

  23. 23

    Shakya S R 2015 Int. J. Chem. Stud. 3 83

    Google Scholar 

  24. 24

    Yeh H, Chuang C, Chen H, Wan C, Chen T and Lin L 2014 LWT - Food Sci. Technol. 55 329

    CAS  Article  Google Scholar 

  25. 25

    Sharma E, Sharma R, Singh K K and Sharma G 2000 Mt. Res. Dev. 20 108

    Article  Google Scholar 

  26. 26

    El-Refai A A, Ghoniem G A, El-Khateeb A Y and Hassaan M M 2018 J. Nanostructure Chem. 8 71

    CAS  Article  Google Scholar 

  27. 27

    Velmurugan P, Anbalagan K, Manosathyadevan M, Lee K J, Cho M, Lee S M et al 2014 Bioprocess Biosyst. Eng. 37 1935

    CAS  Article  Google Scholar 

  28. 28

    Rai S, Bhujel R and Swain B P 2018 IEEE Electron Device Kolkata Conference (EDKCON), p 489

  29. 29

    Sinha S, Devi N A, Nongthombam S, Bhujel R, Rai S, Sarkar G et al 2020 Diam. Relat. Mater. 107 107885.

    CAS  Article  Google Scholar 

  30. 30

    Rabina Bhujel, Sadhna Rai, Utpal Deka and Bibhu P Swain 2019 J. Alloys Compd. 792 250

  31. 31

    Yap P L, Kabiri S, Auyoong Y L, Tran D N H and Losic D 2019 ACS Omega 4 19787

    CAS  Article  Google Scholar 

  32. 32

    Liu P, Huang Y and Wang L 2013 Mater. Lett. 91 125

    CAS  Article  Google Scholar 

  33. 33

    Ossonon B D and Bélanger D 2017 RSC Adv. 7 27224

    CAS  Article  Google Scholar 

  34. 34

    Ganguly A, Sharma S, Papakonstantinou P and Hamilton J 2011 J. Phys. Chem. C 115 17009

    CAS  Article  Google Scholar 

  35. 35

    Dave K, Park K H and Dhayal M 2015 RSC Adv. 5 95657

    CAS  Article  Google Scholar 

  36. 36

    Kudin K N, Ozbas B, Schniepp H C, Prud’homme R K, Aksay I A and Car R 2008 Nano Lett. 8 36

  37. 37

    Dubale A A, Su W N, Tamirat A G, Pan C J, Aragaw B A, Chen H M et al 2014 J. Mater. Chem. A 2 18383

    CAS  Article  Google Scholar 

  38. 38

    Chettri P, Vendamani V S, Tripathi A, Pathak A P and Tiwari A 2016 Appl. Surf. Sci. 362 221

    CAS  Article  Google Scholar 

  39. 39

    Khanra P, Kuila T, Kim N H, Bae S H, Yu D and Lee J H 2012 Chem. Eng. J. 183 526

    CAS  Article  Google Scholar 

  40. 40

    Bhujel R, Rai S and Swain B P 2019 Appl. Nanosci. 9 1319

    CAS  Article  Google Scholar 

  41. 41

    Johra F T, Lee J W and Jung W G 2014 J. Ind. Eng. Chem. 20 2883

    CAS  Article  Google Scholar 

  42. 42

    Lei Y, Tang Z, Liao R and Guo B 2011 Green Chem. 13 1655

    CAS  Article  Google Scholar 

  43. 43

    Khan M, Al-Marri A H, Khan M, Mohri N, Adil S F, Al-Warthan A et al 2014 RSC Adv. 4 24119

    CAS  Article  Google Scholar 

  44. 44

    Tohma H, Gülçin İ, Bursal E, Gören A C, Alwasel S H and Köksal E 2017 J. Food Meas. Charact. 11 556

    Article  Google Scholar 

  45. 45

    Jiang L, Luo D, Lu X, Zhang Q Y, Cai F and Che J 2018 Colloids Surf. A: Physiochem. Eng. Asp. 555 630

    CAS  Article  Google Scholar 

  46. 46

    Rajagopalan B and Chung J S 2014 Nanoscale Res. Lett. 9 535

    Article  CAS  Google Scholar 

  47. 47

    Nasir S, Hussein M Z, Zainal Z and Yusof N A 2019 J. Nanomater. https://doi.org/10.1155/2019/1970365

    Article  Google Scholar 

  48. 48

    Cui X, Lv R, Sagar R U R, Liu C and Zhang Z 2015 Electrochim. Acta 169 342

    CAS  Article  Google Scholar 

  49. 49

    Rai S, Bhujel R, Biswas J and Swain B P 2019 Ceram. Int. 45 14136

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We sincerely acknowledge UGC-DAE-CSR, Indore (ref: CSR-IC-MSR-07/CRS-215/2017-18/1296) and Pai Endowment Fund (ref: SMU/ENDOW/2016-17/292/002) for providing financial support to Miss Sadhna Rai and Miss Rabina Bhujel, respectively.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bibhu Prasad Swain.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 44672 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rai, S., Bhujel, R., Biswas, J. et al. Biocompatible synthesis of rGO from ginger extract as a green reducing agent and its supercapacitor application. Bull Mater Sci 44, 40 (2021). https://doi.org/10.1007/s12034-020-02318-w

Download citation

Keywords

  • Reflux
  • ginger extract (GE)
  • cyclic voltammetry
  • cycling stability
  • supercapacitor