Kinetics of thermal degradation of intumescent flame-retardant spirophosphates

Abstract

The thermal degradation behaviour of various spirophosphates synthesized using SDP (phenol), SDOC (o-cresol), SDMC (m-cresol), SDPC (p-cresol), SDDMP (2,4-dimethylphenol) and SDTMP (2,4,6-trimethylphenol) with 3,9-dichloro-2,4,8,10-tetraoxa-3,9-diphosphaspiro-[5,5]-undecane-3,9-dioxide (SDCDP) are investigated using thermogravimetric analyzer. The spirophosphates show multistage degradations in the temperature range 180–550°C. The second stage of degradation is more prominent and the substituent effect is clearly reflected at this stage of degradation. The compound SDP showed superior performance since it has the greatest char yield value (44%) and LOI value (27%). The model free kinetic methods of Flynn-Wall-Ozawa and Vyazovkin methods are used to calculate the apparent energy of activation for the thermal degradation (Ea-D) of these spirophosphates. The material SDTMP showed the highest Ea-D values.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2

References

  1. 1

    Mostashari S M and Mostashari S Z 2008 J. Therm. Anal. Calorim. 91 437

    CAS  Article  Google Scholar 

  2. 2

    Troitzsch J H 1983 Prog. Org. Coat. 11 41

    CAS  Article  Google Scholar 

  3. 3

    Demir H, Arkiş E, Balköse D and Ülkü S 2005 Polym. Degrad. Stab. 89 478

    CAS  Article  Google Scholar 

  4. 4

    Sen A K and Kumar S 2010 J. Therm. Anal. Calorim. 101 265

    CAS  Article  Google Scholar 

  5. 5

    Li B and Xu M 2006 Polym. Degrad. Stab. 91 1380

    CAS  Article  Google Scholar 

  6. 6

    Ribeiro S P S, Estevão L R M and Nascimento R S V 2007 J. Therm. Anal. Calorim. 87 661

    CAS  Article  Google Scholar 

  7. 7

    Chen Y and Wang Q 2007 Polym. Degrad. Stab. 92 280

    CAS  Article  Google Scholar 

  8. 8

    Le-Bras M and Bourbigot S 1999 J. Mater. Sci. 34 5777

    CAS  Article  Google Scholar 

  9. 9

    Saranya V, Sivasamy P, David Mathan N, Rajkumar T, Ponraju D and Vijayakumar C T 2010 J. Therm. Anal. Calorim. 102 1071

    Article  Google Scholar 

  10. 10

    David Mathan N, Sarasvathy V, Rajkumar T, Thamaraichelvan A, Ponraju D and Vijayakumar C T 2010 Glob. J. Anal. Chem. 1 1

    Article  Google Scholar 

  11. 11

    David Mathan N, Thamaraichelvan A, Ponraju D and Vijayakumar C T 2020 Res. J. Material Sci. 8 1

    CAS  Google Scholar 

  12. 12

    David Mathan N, Sivasamy P, Ponraju D, Thamaraichelvan A and Vijayakumar C T 2012 ScienceJet 28 1

    Google Scholar 

  13. 13

    Flynn J H and Wall L A 1966 J. Res. Natl. Stand. Sec A: Phys. Chem. 70 487

  14. 14

    Ozawa T 1965 Bull. Chem. Soc. Jpn. 38 1881

    CAS  Article  Google Scholar 

  15. 15

    Vyazovkin S 1996 Int. J. Chem. Kinet. 28 95

    CAS  Article  Google Scholar 

  16. 16

    Van Krevelan D 1975 Polymer 16 615

    Article  Google Scholar 

  17. 17

    Brown M E 2005 J. Therm. Anal. Calorim. 82 665

    CAS  Article  Google Scholar 

  18. 18

    Vyazovkin S, Burnhamb A K, Criadoc J M, Pérez-Maquedac L A, Popescud C and Sbirrazzuolie N 2011 Thermochim. Acta 520 1

    CAS  Article  Google Scholar 

  19. 19

    Chrissafis K 2009 J. Therm. Anal. Calorim. 95 273

    CAS  Article  Google Scholar 

  20. 20

    Yao F, Wu Q, Lei Y, Guo W and Xu Y 2008 Polym. Degrad. Stab. 93 90

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Indira Gandhi Centre for Atomic Research (IGCAR) Kalpakkam, India, under the project no. IGCAR/SG/RSD/RI/2007/KCE&T_1. We wish to express our thanks to the Principal and Managing Board of our respective colleges for their constant support to carry out this work successfully.

Author information

Affiliations

Authors

Corresponding author

Correspondence to C T Vijayakumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 679 kb)

Supplementary material 2 (DOC 52 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mathan, N.D., Ponraju, D. & Vijayakumar, C.T. Kinetics of thermal degradation of intumescent flame-retardant spirophosphates. Bull Mater Sci 44, 15 (2021). https://doi.org/10.1007/s12034-020-02317-x

Download citation

Keywords

  • Spirophosphates
  • intumescence
  • thermogravimetric analysis
  • degradation kinetics
  • flame retardants