Abstract
With the goal to tune charge transport and electronic properties of 4,6-di(thiophen-2-yl)pyrimidine (DTP) structure, seven novel V-shaped organic semiconductor compounds were designed by nitrogen doping, oligocenes π-bridge incorporations and push-pull strategy. Primarily, 4,6-bis-thiazol-2-yl-pyrimidine (1) was designed by nitrogen atoms doping in DTP. Then push-pull system named 1DA was designed by substituting –N(CH3)2 at R1 and R2, while –CF3 at R3 and R4 positions of 1. Moreover, various semiconducting materials (2DA-6DA) with tuned properties were designed from 1DA by fusing benzene, naphthalene, anthracene, tetracene and pentacene at both ends. The density functional theory (DFT) and time-dependent DFT were adopted for optimizing the ground and excited state structures, correspondingly. We investigated frontier molecular orbitals, photo-stability, electron injection, electron affinity (EA), ionization energies (IE) and reorganization energies. The push-pull and π-bridge elongation strategies ominously raise EA while diminish IE values, which may lead to decrease the electron and hole injection obstruction. Besides, donors–acceptors and oligocenes at both ends meaningfully drop the electron reorganization energy values as compared to normally used n-type material, i.e., tris(8-hydroxyquinolinato)aluminium (mer-Alq3). These results revealed that newly designed materials 4DA-6DA would be proficient to be used in n-type semiconductor devices.
This is a preview of subscription content, access via your institution.




References
- 1
Zhou R, Yang C, Zou W, Abdullah Adil M, Li H, Lv M et al 2021 J. Energy Chem. 52 228
- 2
Mesta M, Carvelli M, de Vries R J, van Eersel H, van der Holst J J M, Schober M et al 2013 Nat. Mater. 12 652
- 3
Green M A, Emery K, Hishikawa Y, Warta W and Dunlop E D 2012 Prog. Photovolt. 20 12
- 4
Shrestha S 2013 Prog. Photovolt. 21 1429
- 5
Krygowski T M, Cyrañski M K, Czarnocki Z, Häfelinger G and Katritzky A R 2000 Tetrahedron 56 1783
- 6
Cao J, London G, Dumele O, von Wantoch Rekowski M, Trapp N, Ruhlmann L et al 2015 J. Am. Chem. Soc. 137 7178
- 7
Mei J, Diao Y, Appleton A L, Fang L and Bao Z 2013 J. Am. Chem. Soc. 135 6724
- 8
Bendikov M, Wudl F and Perepichka D F 2004 Chem. Rev. 104 4891
- 9
Anthony J E, Facchetti A, Heeney M, Marder S R and Zhan X 2010 Adv. Mater. 22 3876
- 10
Eftaiha A F, Sun J-P, Hill I G and Welch G C 2014 J. Mater. Chem. A 2 1201
- 11
Wang Y, Fang D, Fu T, Ali M U, Shi Y, He Y et al 2020 Mater. Chem. Front. https://doi.org/10.1039/d0qm00038h
- 12
Irfan A, Imran M, Mumtaz M W, Ullah S, Assiri M A and Al-Sehemi A G 2020 Optik https://doi.org/10.1016/j.ijleo.2020.165530
- 13
Di Ventra M, Pantelides S T and Lang N D 2000 Phys. Rev. Lett. 84 979
- 14
Irfan A, Al-Zeidaneen F K, Ahmed I, Al-Sehemi A G, Assiri M A, Ullah S et al 2020 Bull. Mater. Sci. 43 45
- 15
Irfan A, Al-Sehemi A G, Assiri M A and Mumtaz M W 2019 Bull. Mater. Sci. 42 145
- 16
Irfan A, Al-Sehemi A G and Muhammad S 2014 Synth. Met. 190 27
- 17
Zhang J, Wu G, He C, Deng D and Li Y 2011 J. Mater. Chem. 21 3768
- 18
Mahmood A and Irfan A 2020 J. Comput. Electron. 19 931
- 19
Minemawari H, Yamada T, Matsui H, Tsutsumi J Y, Haas S, Chiba R et al 2011 Nature 475 364
- 20
Kim D H, Park Y D, Jang Y, Yang H, Kim Y H, Han J I et al 2005 Adv. Funct. Mater. 15 77
- 21
Wang L, Nan G, Yang X, Peng Q, Li Q and Shuai Z 2010 Chem. Soc. Rev. 39 423
- 22
Anthony J E 2008 Angew. Chem. Int. Ed. 47 452
- 23
Anthony J E 2006 Chem. Rev. 106 5028
- 24
Ifan A, Chaudhry A R and Al-Sehemi A G 2020 Optik 208 164009
- 25
Irfan A, Al-Sehemi A G, Assiri M A and Ullah A 2020 Mater. Sci. Semicond. Process. 107 104855
- 26
Dufresne S, Hanan G S and Skene W G 2007 J. Phys. Chem. B 111 11407
- 27
Sánchez-Carrera R S, Coropceanu V, da Silva Filho D A, Friedlein R, Osikowicz W, Murdey R et al 2006 J. Phys. Chem. B 110 18904
- 28
Irfan A, Chaudhry A R, Al-Sehemi A G, Assiri M A and Hussain A 2019 Comput. Mater. Sci. 170 109179
- 29
Irfan A 2019 Results Phys. 13 102304
- 30
Petersson G A, Bennett A, Tensfeldt T G, Al‐Laham M A, Shirley W A and Mantzaris J 1988 J. Chem. Phys. 89 2193
- 31
Lee C, Yang W and Parr R G 1988 Phys. Rev. B 37 785
- 32
Zhang C, Liang W, Chen H, Chen Y, Wei Z and Wu Y 2008 J. Mol. Struct. (TheoChem) 862 98
- 33
Greenham N C, Moratti S C, Bradley D D C, Friend R H and Holmes A B 1993 Nature 365 628
- 34
Marcus R A and Sutin N 1985 Biochim. Biophys. Acta—Rev. Bioenerg. 811 265
- 35
Tsiper E V, Soos Z G, Gao W and Kahn A 2002 Chem. Phys. Lett. 360 47
- 36
Brédas J L, Calbert J P, da Silva Filho D A and Cornil J 2002 Proc. Natl. Acad. Sci. 99 5804
- 37
Soos Z G, Tsiper E V and Painelli A 2004 J. Lumin. 110 332
- 38
Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R et al 2016 Wallingford, CT: Gaussian, Inc.
- 39
Irfan A, Chaudhry A R, Al-Sehemi A G, Sultan Al-Asiri M, Muhammad S and Kalam A 2016 J. Saudi Chem. Soc. 20 336
- 40
http://www2.chemistry.msu.edu/faculty/harrison/cem483/work_functions.pdf
- 41
Pearson R G 1985 J. Am. Chem. Soc. 107 6801
- 42
Vektariene A, Vektaris G and Svoboda J 2009 ARKIVOC 2009 311
- 43
Geerlings P, De Proft F and Langenaeker W 2003 Chem. Rev. 103 1793
- 44
Politzer P and Truhlar D G (eds) 1981 Chemical applications of atomic and molecular electrostatic potential (New York: Plenum Press) p 93
- 45
Stewart R F 1979 Chem. Phys. Lett. 65 335
- 46
Irfan A, Cui R and Zhang J 2009 Theor. Chem. Acc. 122 275
- 47
Marcus R A 1993 Rev. Mod. Phys. 65 599
- 48
Irfan A, Cui R, Zhang J and Hao L 2009 Chem. Phys. 364 39
Acknowledgement
I would like to acknowledge the financial support of the King Khalid University for this research through a grant RCAMS/KKU/006–20 under the Research Center for Advanced Materials Science at King Khalid University, Kingdom of Saudi Arabia.
Author information
Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Irfan, A. Push-pull effect on the charge transport characteristics in V-shaped organic semiconductor materials. Bull Mater Sci 44, 43 (2021). https://doi.org/10.1007/s12034-020-02316-y
Received:
Accepted:
Published:
Keywords
- Organic semiconductors
- oligocenes
- tris(8-hydroxyquinolinato)aluminium
- charge transport
- electronic properties