Push-pull effect on the charge transport characteristics in V-shaped organic semiconductor materials


With the goal to tune charge transport and electronic properties of 4,6-di(thiophen-2-yl)pyrimidine (DTP) structure, seven novel V-shaped organic semiconductor compounds were designed by nitrogen doping, oligocenes π-bridge incorporations and push-pull strategy. Primarily, 4,6-bis-thiazol-2-yl-pyrimidine (1) was designed by nitrogen atoms doping in DTP. Then push-pull system named 1DA was designed by substituting –N(CH3)2 at R1 and R2, while –CF3 at R3 and R4 positions of 1. Moreover, various semiconducting materials (2DA-6DA) with tuned properties were designed from 1DA by fusing benzene, naphthalene, anthracene, tetracene and pentacene at both ends. The density functional theory (DFT) and time-dependent DFT were adopted for optimizing the ground and excited state structures, correspondingly. We investigated frontier molecular orbitals, photo-stability, electron injection, electron affinity (EA), ionization energies (IE) and reorganization energies. The push-pull and π-bridge elongation strategies ominously raise EA while diminish IE values, which may lead to decrease the electron and hole injection obstruction. Besides, donors–acceptors and oligocenes at both ends meaningfully drop the electron reorganization energy values as compared to normally used n-type material, i.e., tris(8-hydroxyquinolinato)aluminium (mer-Alq3). These results revealed that newly designed materials 4DA-6DA would be proficient to be used in n-type semiconductor devices.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4


  1. 1

    Zhou R, Yang C, Zou W, Abdullah Adil M, Li H, Lv M et al 2021 J. Energy Chem. 52 228

    Article  Google Scholar 

  2. 2

    Mesta M, Carvelli M, de Vries R J, van Eersel H, van der Holst J J M, Schober M et al 2013 Nat. Mater. 12 652

    CAS  Article  Google Scholar 

  3. 3

    Green M A, Emery K, Hishikawa Y, Warta W and Dunlop E D 2012 Prog. Photovolt. 20 12

    Article  Google Scholar 

  4. 4

    Shrestha S 2013 Prog. Photovolt. 21 1429

    Article  Google Scholar 

  5. 5

    Krygowski T M, Cyrañski M K, Czarnocki Z, Häfelinger G and Katritzky A R 2000 Tetrahedron 56 1783

    CAS  Article  Google Scholar 

  6. 6

    Cao J, London G, Dumele O, von Wantoch Rekowski M, Trapp N, Ruhlmann L et al 2015 J. Am. Chem. Soc. 137 7178

    CAS  Article  Google Scholar 

  7. 7

    Mei J, Diao Y, Appleton A L, Fang L and Bao Z 2013 J. Am. Chem. Soc. 135 6724

    CAS  Article  Google Scholar 

  8. 8

    Bendikov M, Wudl F and Perepichka D F 2004 Chem. Rev. 104 4891

    CAS  Article  Google Scholar 

  9. 9

    Anthony J E, Facchetti A, Heeney M, Marder S R and Zhan X 2010 Adv. Mater. 22 3876

    CAS  Article  Google Scholar 

  10. 10

    Eftaiha A F, Sun J-P, Hill I G and Welch G C 2014 J. Mater. Chem. A 2 1201

    CAS  Article  Google Scholar 

  11. 11

    Wang Y, Fang D, Fu T, Ali M U, Shi Y, He Y et al 2020 Mater. Chem. Front. https://doi.org/10.1039/d0qm00038h

  12. 12

    Irfan A, Imran M, Mumtaz M W, Ullah S, Assiri M A and Al-Sehemi A G 2020 Optik https://doi.org/10.1016/j.ijleo.2020.165530

  13. 13

    Di Ventra M, Pantelides S T and Lang N D 2000 Phys. Rev. Lett. 84 979

    Article  Google Scholar 

  14. 14

    Irfan A, Al-Zeidaneen F K, Ahmed I, Al-Sehemi A G, Assiri M A, Ullah S et al 2020 Bull. Mater. Sci. 43 45

    Article  CAS  Google Scholar 

  15. 15

    Irfan A, Al-Sehemi A G, Assiri M A and Mumtaz M W 2019 Bull. Mater. Sci. 42 145

    Article  CAS  Google Scholar 

  16. 16

    Irfan A, Al-Sehemi A G and Muhammad S 2014 Synth. Met. 190 27

    CAS  Article  Google Scholar 

  17. 17

    Zhang J, Wu G, He C, Deng D and Li Y 2011 J. Mater. Chem. 21 3768

    Article  CAS  Google Scholar 

  18. 18

    Mahmood A and Irfan A 2020 J. Comput. Electron. 19 931

    CAS  Article  Google Scholar 

  19. 19

    Minemawari H, Yamada T, Matsui H, Tsutsumi J Y, Haas S, Chiba R et al 2011 Nature 475 364

    CAS  Article  Google Scholar 

  20. 20

    Kim D H, Park Y D, Jang Y, Yang H, Kim Y H, Han J I et al 2005 Adv. Funct. Mater. 15 77

    Article  CAS  Google Scholar 

  21. 21

    Wang L, Nan G, Yang X, Peng Q, Li Q and Shuai Z 2010 Chem. Soc. Rev. 39 423

    CAS  Article  Google Scholar 

  22. 22

    Anthony J E 2008 Angew. Chem. Int. Ed. 47 452

    CAS  Article  Google Scholar 

  23. 23

    Anthony J E 2006 Chem. Rev. 106 5028

    CAS  Article  Google Scholar 

  24. 24

    Ifan A, Chaudhry A R and Al-Sehemi A G 2020 Optik 208 164009

    Article  CAS  Google Scholar 

  25. 25

    Irfan A, Al-Sehemi A G, Assiri M A and Ullah A 2020 Mater. Sci. Semicond. Process. 107 104855

    CAS  Article  Google Scholar 

  26. 26

    Dufresne S, Hanan G S and Skene W G 2007 J. Phys. Chem. B 111 11407

    CAS  Article  Google Scholar 

  27. 27

    Sánchez-Carrera R S, Coropceanu V, da Silva Filho D A, Friedlein R, Osikowicz W, Murdey R et al 2006 J. Phys. Chem. B 110 18904

    Article  CAS  Google Scholar 

  28. 28

    Irfan A, Chaudhry A R, Al-Sehemi A G, Assiri M A and Hussain A 2019 Comput. Mater. Sci. 170 109179

    CAS  Article  Google Scholar 

  29. 29

    Irfan A 2019 Results Phys. 13 102304

    Article  Google Scholar 

  30. 30

    Petersson G A, Bennett A, Tensfeldt T G, Al‐Laham M A, Shirley W A and Mantzaris J 1988 J. Chem. Phys. 89 2193

    CAS  Article  Google Scholar 

  31. 31

    Lee C, Yang W and Parr R G 1988 Phys. Rev. B 37 785

    CAS  Article  Google Scholar 

  32. 32

    Zhang C, Liang W, Chen H, Chen Y, Wei Z and Wu Y 2008 J. Mol. Struct. (TheoChem) 862 98

    CAS  Article  Google Scholar 

  33. 33

    Greenham N C, Moratti S C, Bradley D D C, Friend R H and Holmes A B 1993 Nature 365 628

    CAS  Article  Google Scholar 

  34. 34

    Marcus R A and Sutin N 1985 Biochim. Biophys. ActaRev. Bioenerg. 811 265

    CAS  Article  Google Scholar 

  35. 35

    Tsiper E V, Soos Z G, Gao W and Kahn A 2002 Chem. Phys. Lett. 360 47

    CAS  Article  Google Scholar 

  36. 36

    Brédas J L, Calbert J P, da Silva Filho D A and Cornil J 2002 Proc. Natl. Acad. Sci. 99 5804

    Article  CAS  Google Scholar 

  37. 37

    Soos Z G, Tsiper E V and Painelli A 2004 J. Lumin. 110 332

    CAS  Article  Google Scholar 

  38. 38

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R et al 2016 Wallingford, CT: Gaussian, Inc.

  39. 39

    Irfan A, Chaudhry A R, Al-Sehemi A G, Sultan Al-Asiri M, Muhammad S and Kalam A 2016 J. Saudi Chem. Soc. 20 336

    CAS  Article  Google Scholar 

  40. 40


  41. 41

    Pearson R G 1985 J. Am. Chem. Soc. 107 6801

    CAS  Article  Google Scholar 

  42. 42

    Vektariene A, Vektaris G and Svoboda J 2009 ARKIVOC 2009 311

    Article  Google Scholar 

  43. 43

    Geerlings P, De Proft F and Langenaeker W 2003 Chem. Rev. 103 1793

    CAS  Article  Google Scholar 

  44. 44

    Politzer P and Truhlar D G (eds) 1981 Chemical applications of atomic and molecular electrostatic potential (New York: Plenum Press) p 93

  45. 45

    Stewart R F 1979 Chem. Phys. Lett. 65 335

    CAS  Article  Google Scholar 

  46. 46

    Irfan A, Cui R and Zhang J 2009 Theor. Chem. Acc. 122 275

    CAS  Article  Google Scholar 

  47. 47

    Marcus R A 1993 Rev. Mod. Phys. 65 599

    CAS  Article  Google Scholar 

  48. 48

    Irfan A, Cui R, Zhang J and Hao L 2009 Chem. Phys. 364 39

    CAS  Article  Google Scholar 

Download references


I would like to acknowledge the financial support of the King Khalid University for this research through a grant RCAMS/KKU/006–20 under the Research Center for Advanced Materials Science at King Khalid University, Kingdom of Saudi Arabia.

Author information



Corresponding author

Correspondence to Ahmad Irfan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 138 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Irfan, A. Push-pull effect on the charge transport characteristics in V-shaped organic semiconductor materials. Bull Mater Sci 44, 43 (2021). https://doi.org/10.1007/s12034-020-02316-y

Download citation


  • Organic semiconductors
  • oligocenes
  • tris(8-hydroxyquinolinato)aluminium
  • charge transport
  • electronic properties