Abstract
In this study, we report the synthesis of two CdS@TiO2 nanocomposites (CT1 and CT2) by two-step low temperature solvothermal decomposition method using two different stoichiometric combinations between CdS and TiO2 nanoparticles (NPs). CdCl2(3-chlorobenzaldehyde thiosemicarbazone)2 was used as a molecular precursor to obtain CdS NPs, whereas titanium isopropoxide was used to obtain TiO2 NPs. The as-prepared CT nanocomposites were characterized by powder X-ray diffraction, field emission scanning electron microscopy, Raman spectroscopy, transmission electron microscopy and X-ray photoelectron spectroscopy to evaluate their structures and properties. Further, these nanocomposites were used for the photocatalytic degradation of rhodamine B under solar light irradiation. It is found that CdS@TiO2 (CT1) nanocomposite shows highest degradation efficiency of 98.74% within 60 min as compared to bare TiO2 NPs which shows only 66.40% degradation efficiency. The enhanced photocatalytic efficiency due to charge transfer properties of bare NPs and CT nanocomposites was further investigated by electrochemical analysis and photoluminescence studies.
Graphic abstract

This is a preview of subscription content, access via your institution.










References
- 1
Arabzadeh A and Salimi A 2016 J. Colloid Interface Sci. 479 43
- 2
Pant B, Barakat N A M, Pant H R, Park M, Saud P S, Kim J W et al 2014 J. Colloid Interface Sci. 434 159
- 3
Su C, Shao C and Liu Y 2011 J. Colloid Interface Sci. 359 220
- 4
Nakata K and Fujishima A 2012 J. Photochem. Photobiol. C: Photochem. Rev. 13 169
- 5
Hoffmann M R, Martin S T, Choi W and Bahnemann D W 1995 Chem. Rev. 95 69
- 6
Wang H, Wang G, Ling Y, Lepert M, Wang C, Zhang J Z et al 2012 Nanoscale 4 1463
- 7
Li X, Chen X, Niu H, Han X, Zhang T, Liu J et al 2015 J. Colloid Interface Sci. 452 89
- 8
Isamail A A and Bahnemann D W 2011 J. Mater. Chem. 21 11686
- 9
Guo X, Di W, Chen C, Liu C, Wang X and Qin W 2014 Dalton Trans. 43 1048
- 10
Cao Y, He T, Chen Y and Cao Y 2010 J. Phys. Chem. C 114 3627
- 11
Anpo M and Takeuchi M 2003 J. Catal. 216 505
- 12
Kato H and Kudo A 2002 J. Phys. Chem. B 106 5029
- 13
Iwasaki M, Hara M, Kawada H, Tada H and Ito S 2000 J. Colloid Interface Sci. 224 202
- 14
Zhang Z, Shao C, Li X, Sun Y, Zhang M, Mu J et al 2013 Nanoscale 5 606
- 15
Chaguetmi S, Mammeri F, Nowak S, Decorse P, Lecoq H, Gaceur M et al 2013 RSC Adv. 3 2572
- 16
Ashokkumar M 1998 Int. J. Hydrog. Energy 23 427
- 17
Xue C, Wang T, Yang G, Yang B and Ding S 2014 J. Mater. Chem. A 2 7674
- 18
Bessekhouad Y, Robert D and Weber J V 2004 J. Photochem. Photobiol. A: Chemistry 163 569
- 19
Shi J-W, Yan X, Cui H-J, Zong X, Fu M-L, Chen S et al 2012 J. Mol. Catal. A: Chem. 356 53
- 20
Liu Z, Fang P, Wang S, Gao Y, Chen F, Zheng F et al 2012 J. Mol. Catal. A: Chem. 363 159
- 21
Yu L, Wang D and Ye D 2015 Sep. Purif. Technol. 156 708
- 22
Zhou P, Le Z, Xie Y, Fang J and Xu J 2017 J. Alloys Compd. 692 170
- 23
Ahmed R, Will G, Bell J and Wang H 2012 J. Nanoparticle Res. 14 1
- 24
Lv J, Wang H, Gao H, Xu G, Wang D, Chen Z et al 2015 Surf. Coat. Technol. 261 356
- 25
Pawar A S, Garje S S and Revaprasadu N 2016 Mater. Chem. Phys. 183 366
- 26
Samant K M, Suroshe S J and Garje S S 2014 Eur. J. Inorg. Chem. 2014 499
- 27
Ansari A, Badhe R A and Garje S S 2019 ACS Omega 4 14937
- 28
Pawar A S, Mlowe S, Garje S S, Akerman M P and Revaprasadu N 2017 Inorg. Chim. Acta 463 7
- 29
Disale S D and Garje S S 2011 J. Organomet. Chem. 696 3328
- 30
Badhe R A, Ansari A and Garje S S 2018 ACS Omega 3 18663
- 31
Ansari A, Sachar S and Garje S S 2018 New J. Chem. 42 13358
- 32
Liu L, Luo C, Xiong J, Yang Z, Zhang Y, Cai Y et al 2017 J. Alloys Compd. 690 771
- 33
Mlondo S N, Revaprasadu N, Christian P, Helliwell M and O’Brien P 2009 Polyhedron 28 2097
- 34
Kalpana D, Omkumar K S, Kumar S S and Renganathan N G 2006 Electrochim. Acta 52 1309
- 35
Li X, Xia T, Xu C, Murowchick J and Chen X 2014 Catal. Today 225 64
- 36
Zhao H, Liu L, Andino J M and Li Y 2013 J. Mater. Chem. A 1 8209
- 37
Chen Z and Xu Y J 2013 ACS Appl. Mater. Interfaces 5 13353
- 38
Mani A D and Subrahmanyam C 2016 Mater. Res. Bull. 73 377
- 39
Wu L, Yu J C and Fu X 2006 J. Mol. Catal. A: Chem. 244 25
- 40
Yang G, Yang B, Xiao T and Yan Z 2013 Appl. Surf. Sci. 283 402
- 41
Kim Y, Lee J, Jeong H, Lee Y, Um M H, Jeong K M et al 2008 J. Ind. Eng. Chem. 14 396
- 42
Li X, Shen H, Li S, Niu J Z, Wang H and Li L S 2010 J. Mater. Chem. 20 923
- 43
Sun M, Wang Y, Fang Y, Sun S and Yu Z 2016 J. Alloys Compd. 684 335
- 44
Qorbani M, Naseri N, Moradlou O, Azimirad R and Moshfegh A Z 2015 Appl. Catal. B: Environ. 162 210
- 45
Kozlova E A, Kozhevnikova N S, Cherepanova S V, Lyubina T P, Gerasimov E Y, Kaichev V V et al 2012 J. Photochem. Photobiol. A: Chem. 250 103
- 46
Bruce J C, Revaprasadu N and Koc K R 2007 New J. Chem. 31 1647
- 47
Maleki M and Haghighi M 2016 J. Mol. Catal. A: Chem. 424 283
- 48
Onwudiwe D C, Kruger T P J, Oluwatobi O S and Steydom C A 2014 Appl. Surf. Sci. 290 18
- 49
Jostar T S, Devadason S and Suthagar J 2015 Mater. Sci. Semicond. Process. 34 65
- 50
Fu H, Pan C, Yao W and Zhu Y 2005 J. Phys. Chem. B 109 22432
- 51
Guo X, Chen C, Song W, Wang X, Di W and Qin W 2014 J. Mol. Catal. A: Chem. 387 1
- 52
Zhou L, Jin C, Yu Y, Chi F, Ran S and Lv Y 2016 J. Alloys Compd. 680 301
- 53
Zhao H, Wu M, Liu J, Deng Z, Li Y and Su B-L 2016 Appl. Catal. B: Environ. 184 182
- 54
Wang M, Zhang H, Zu H, Zhang Z and Han J 2018 Appl. Surf. Sci. 455 729
- 55
Li C, Fan W, Lu H, Ge Y, Bai H and Shi W 2016 New J. Chem. 40 2287
- 56
Divya K S, Xavier M M, Vandana P V, Reethu V N and Mathew S 2017 New J. Chem. 41 6445
- 57
Sun G, Zhu C, Zheng J, Jiang B, Yin H, Wang H et al 2016 Mater. Lett. 166 113
- 58
Liang H, Liu S, Zhang H, Wang X and Wang J 2018 RSC Adv. 8 13625
- 59
Tian F, Hou D, Hu F, Xie K, Qiao X and Li D 2017 Appl. Surf. Sci. 391 295
- 60
Shi Z, Liu J, Lan H, Li X, Zhu B and Yang J 2019 J. Mater. Sci.: Mater. Electron. 30 17682
- 61
Dang R and Ma X 2017 J. Mater. Sci.: Mater. Electron. 28 8818
- 62
Wang H, Li J, Zhou H, Yao S and Zhang W 2019 J. Mater. Sci.: Mater. Electron. 30 10754
- 63
Yang H, Liu Z, Wang K, Pu S, Yang S and Yang L 2017 Catal. Lett. 147 2581
Acknowledgements
We are thankful to the Department of Science and Technology (DST-EMRF grant nos. EMR/2016/007052 and DST-PURSE), India, for providing financial support. We also acknowledge Department of Earth Science, Indian Institute of Technology, Bombay, for providing Raman Facility and MNIT, Jaipur, for providing XPS analysis.
Author information
Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Badhe, R.A., Ansari, A. & Garje, S.S. Study of optical properties of TiO2 nanoparticles and CdS@TiO2 nanocomposites and their use for photocatalytic degradation of rhodamine B under natural light irradiation. Bull Mater Sci 44, 11 (2021). https://doi.org/10.1007/s12034-020-02313-1
Received:
Accepted:
Published:
Keywords
- Molecular precursor
- solvothermal method
- composite materials
- optical properties
- photocatalytic activity