Cu- and Mn-doped forsterite: sol–gel synthesis, and optical and colorimetric investigation

Abstract

Cu-doped forsterite Mg2−xCuxSiO4 (0.1 ≤ x ≤ 0.6) and Mn-doped forsterite Mg2−xMnxSiO4 (0.2 ≤ x ≤ 1) powders have been prepared by sol–gel method and characterized by XRD, SEM–EDS mapping, UV–Vis–NIR spectroscopy and CIE L*a*b* colour measurements to be explored as powdered ceramic pigments. The use of a sol–gel method based on silicic acid (H2Si2O5)aq and mineralizers (KCl and NaCl) along with a thermal treatment at 1200°C for 3 h, led to the formation of highly pure materials. The presence of Cu and Mn ions in the M1 and M2 sites was the main origin of the pigments colour. The latter was mostly affected by the chromophore’s valence state and concentration, and some formed minor phases. Besides that, the pigments with low doping levels showed very nice and attractive blue (Cu) and purple (Mn), making them interesting less toxic and less expensive ceramic pigment candidates.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

References

  1. 1

    Marinova Y, Hohemberger J M, Cordoncillo E, Escribano P and Carda J B 2003 J. Eur. Ceram. Soc. 23 213

    CAS  Article  Google Scholar 

  2. 2

    Dondi M, Lyubenova T S, Carda J B and Ocaña M 2009 J. Am. Ceram. Soc. 92 1972

    CAS  Article  Google Scholar 

  3. 3

    El Hadri M, Ahamdane H and El Idrissi Raghni M A 2015 J. Eur. Ceram. Soc. 35 765

    Article  Google Scholar 

  4. 4

    Dyar M D, Sklute E C, Menzies O N, Bland P A, Lindsley D, Glotch T et al 2009 Am. Mineral. 94 883

    CAS  Article  Google Scholar 

  5. 5

    Balan E, Ingrin J, Delattre S, Kovács I and Blanchard M 2011 Eur. J. Mineral. 23 285

    CAS  Article  Google Scholar 

  6. 6

    Burns R G 1993 Mineralogical applications of crystal field theory 2nd edn (New York: Cambridge University Press)

  7. 7

    Hirsch L M and Shankland T J 1993 Geophys. J. Int. 114 21

    Article  Google Scholar 

  8. 8

    Töpfer J and Dieckmann R 2010 Solid State Ionics 181 479

    Article  Google Scholar 

  9. 9

    Takei H 1976 J. Cryst. Growth 34 125

    CAS  Article  Google Scholar 

  10. 10

    Gualtieri A and Bagni S 2001 Per. Mineral. 70 27

    Google Scholar 

  11. 11

    Gorodylova N, Kosinová V, Dohnalová Ž, Šulcová P and Bělina P 2014 Dyes Pigm. 111 156

    CAS  Article  Google Scholar 

  12. 12

    Faulkner E B and Schwartz R J (eds) 2009 High performance pigments (Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA)

  13. 13

    Burns R G 1970 Am. Mineral. 55 1608

    CAS  Google Scholar 

  14. 14

    Cloutis E A 1997 J. Geophys. Res.: Planets 102 25575

    CAS  Article  Google Scholar 

  15. 15

    Kanazawa H, Ito K, Sato H, Kumatoriya M, Miyazaki K, Uehara S et al 2007 J. Cryst. Growth 304 492

    CAS  Article  Google Scholar 

  16. 16

    Schlesinger M E and Biswas A K (eds) 2011 Extractive metallurgy of copper (Amsterdam, Boston: Elsevier)

    Google Scholar 

  17. 17

    Lai Y, Tang X, Huang X, Zhang H, Liang X, Li J et al 2018 J. Eur. Ceram. Soc. 38 1508

    CAS  Article  Google Scholar 

  18. 18

    El Hadri M, Ahamdane H and El Idrissi Raghni M A 2017 Bull. Mater. Sci. 40 375

    CAS  Article  Google Scholar 

  19. 19

    El Hadri M, Siragi N, Ahamdane H and El Idrissi Raghni M A 2019 J. Eur. Ceram. Soc. 39 5442

    Article  Google Scholar 

  20. 20

    CIE 1971 Recommendations on uniform color spaces, color difference equations, psychometrics color terms. Supplement no. 2, CIE Publ. No. 15 (E1–1.31)

  21. 21

    Sugiyama T, Tsunooka T, Kakimoto K and Ohsato H 2006 J. Eur. Ceram. Soc. 26 2097

    CAS  Article  Google Scholar 

  22. 22

    Yamazaki S and Toraya H 1999 J. Appl. Crystallogr. 32 51

    CAS  Article  Google Scholar 

  23. 23

    Ameh E S 2019 Int. J. Adv. Manuf. Technol. 105 3289

    Article  Google Scholar 

  24. 24

    Shannon R D 1976 Acta Cryst. A 32 751

    Article  Google Scholar 

  25. 25

    Bondioli F 2009 in Dyes and pigments: new research A R Lang (ed) (New York: Nova Science Publishers Inc.) p 351

  26. 26

    Eppler D R and Eppler R A 1997 in Ceramic engineering and science proceedings R K Wood (ed) (Hoboken, NJ, USA: John Wiley & Sons, Inc.) p 139

  27. 27

    Chakradhar R P S, Ramesh K P, Rao J L and Ramakrishna J 2003 J. Phys.: Condens. Matter 15 1469

    CAS  Google Scholar 

  28. 28

    Zhang L and Wang H 2011 ACS Nano 5 3257

    CAS  Article  Google Scholar 

  29. 29

    Keppler H 1992 Am. Mineral. 77 62

    CAS  Google Scholar 

  30. 30

    Rajiv A, Reddy M, Uchil J and Reddy N 2015 Int. J. Lum. Appl. 5 41

    Google Scholar 

  31. 31

    Sathyanarayana D N 2001 Electronic absorption spectroscopy and related techniques (Hyderabad, India: Universities Press)

  32. 32

    Nagashima M and Akasaka M 2010 Am. Mineral. 95 1237

    CAS  Article  Google Scholar 

  33. 33

    Sridharan K 2016 Spectral methods in transition metal complexes (Amsterdam: Elsevier)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N SIRAGI.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

SIRAGI, N., EL HADRI, M., AHAMDANE, H. et al. Cu- and Mn-doped forsterite: sol–gel synthesis, and optical and colorimetric investigation. Bull Mater Sci 44, 12 (2021). https://doi.org/10.1007/s12034-020-02309-x

Download citation

Keywords

  • Sol–gel process
  • forsterite
  • optical properties
  • ceramic pigments