Al2O3 nanoparticle polymorphs: effects of Zn2+ doping on the structural, optical and cytotoxic properties

Abstract

Al2O3-Zn x% NPs, with x = 0, 1, 3, 5 or 10 mol% Zn2+ were synthesized by a modified sol–gel method. The influence of the insertion of Zn2+ dopant on the crystal lattice, morphology, optical and cytotoxic properties of Al2O3 was investigated. Rietveld refinement applied to DRX data revealed that the oxides are constituted by four crystalline phases: α-Al2O3, θ-Al2O3, δ-Al2O3 and α-Al2O3(*), and that the doping promoted changes in unit cell volume for all the crystalline phases. Raman signals indicated that the insertion of Zn2+ caused changes in the vibrations of bonds Al–O, mainly in tetrahedral sites of transition phases of Al2O3, which are preferentially occupied by Zn ions. The oxides exhibited photoluminescence emission in the visible and near-infrared region, but Al2O3-Zn 10% showed increased emission intensity in the visible region. The nanoparticles with spherical and elongated morphologies did not exhibit cytotoxic effects on L929 fibroblast cells.

Graphic abstract

Zn-doped Al2O3 nanoparticles were synthesized by a modified sol-gel method. The influence of the insertion of Zn2+ dopant on the crystal lattice, morphology, optical and cytotoxic properties of Al2O3 was investigated.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

References

  1. 1

    Piconi C and Maccauro G 2016 in Reference module in materials science and materials engineering Saleem Hashmi (ed) (Oxford: Elsevier) p 1

  2. 2

    Radziun E, Wilczynska J D, Ksiazek I, Nowak K, Anuszewska E L, Kunicki A et al 2011 Toxicol. in Vitro 25 1694

    CAS  Article  Google Scholar 

  3. 3

    Chagas L H, Carvalho G S G, San Gil R A S, Chiaro S S X, Leitão A A and Diniz R 2014 Mater. Res. Bull. 49 216

    CAS  Article  Google Scholar 

  4. 4

    Pardo P and Alarcon J 2018 Ceram. Int. 44 11486

    CAS  Article  Google Scholar 

  5. 5

    Zhang X, Pfeiffer S, Rutkowski P, Mokowska M, Kata D, Yang J et al 2020 Appl. Surf. Sci. 520 146304

    CAS  Article  Google Scholar 

  6. 6

    Terzic A, Pezo L, Andric L and Mitic V V 2015 Ceram. Int. 41 11908

    CAS  Article  Google Scholar 

  7. 7

    Kim H N and Lee S K 2013 Am. Mineral. 98 1198

    CAS  Article  Google Scholar 

  8. 8

    Park E, Lee G, Yoon C, Jeong U, Kim Y, Cho M et al 2015 J. Appl. Toxicol. 36 424

  9. 9

    Itou M, Fujiwara A and Uchino T 2009 J. Phys. Chem. C 113 20949

    CAS  Article  Google Scholar 

  10. 10

    Zhang T, Zhou Y, Bu X, Wang Y, Zhang M and Hu J 2014 Ceram. Int. 40 13703

    CAS  Article  Google Scholar 

  11. 11

    Mozalev A, Sakairi M, Takahashi H, Habazaki H and Hubalek J 2014 Thin Solid Films 550 486

    CAS  Article  Google Scholar 

  12. 12

    Treccani L, Yvonne T, Lein K, Meder F, Pardun K and Rezwan K 2013 Acta Biomater. 9 7115

    CAS  Article  Google Scholar 

  13. 13

    Lakade S H, Harde M T and Deshmukh P K 2019 Particul. Sci. Technol. 0272 6351

    Google Scholar 

  14. 14

    Nemade K R and Waghuley S A 2014 Ceram. Int. 40 6109

    CAS  Article  Google Scholar 

  15. 15

    Mestres G, Espanol M, Xia W, Tenje M and Ott M 2016 ACS Omega 1 706

    CAS  Article  Google Scholar 

  16. 16

    Periasamy V S, Athinarayanan J and Alshatwi A A 2016 Biotechnol. Appl. Biochem. 63 320

    CAS  Article  Google Scholar 

  17. 17

    Choi J and Wang N S 2011 in Nanoparticles in biomedical applications and their safety concerns. In biomedical engineering from theory to applications R Fazel-Rezai (ed) (Rijeka: InTech Publisher) p 299

  18. 18

    Mitragotri S and Lahann J 2009 Nat. Mater. 8 15

    CAS  Article  Google Scholar 

  19. 19

    Dick M K, Miao J H and Limaiem F 2020 Histology, fibroblast (Treasure Island, FL: Stat Pearls Publishing)

    Google Scholar 

  20. 20

    Melo A, Bet A C, Assreuy J, Debacher N A and Soldi V J 2009 Braz. Chem. Soc. 20 1753

    Article  Google Scholar 

  21. 21

    Serrano M C, Pagani R, Vallet-Regi M, Pena J, Ramila A, Izquierdo I et al 2004 Biomaterials 25 5603

  22. 22

    ISO 1099355 2009 International standard ISO specification 10993-5: biological evaluation of medical devices – Part 5. Tests for in vitro cytotoxicity, Geneva, Switzerland

  23. 23

    Lopes V R, Schmidtke M, Helena Fernandes M, Martins R and Vasconcelos V 2011 Toxicol. In Vitro 25 944

    CAS  Article  Google Scholar 

  24. 24

    Wadajkar A S, Ahn C, Nguyen K T, Zhu Q and Komabayashi T 2014 ISRN Dentist. 2014 191068

    Article  Google Scholar 

  25. 25

    Song Z, Tang H, Xiaoyong D, Xiang K, Cao A, Liu Y et al 2017 J. Nanosci. Nanotechnol. 17 2881

    CAS  Article  Google Scholar 

  26. 26

    Kannan K, Radhika D, Sadasivuni K K, Reddy K R and Raghu A V 2020 Adv. Colloid Interface Sci. 281 102178

    CAS  Article  Google Scholar 

  27. 27

    Wang Y, Luo F, Wei P, Zhou W and Zhu D 2015 J. Elec. Materi. 44 2353

    CAS  Article  Google Scholar 

  28. 28

    Chen S, Cui X, Ding S, Sun Q, Nyberg T, Zhang S et al 2013 IEEE Electron. Device Lett. 34 1008

    CAS  Article  Google Scholar 

  29. 29

    Wang H, Wei Y, Yang Y and Lee J 2005 J. Electron. Spectrosc. Relat. Phenom. 144–147 817

    Article  CAS  Google Scholar 

  30. 30

    Weng Y, Liu H, Ji S, Huang Q, Wu H, Li Z et al 2018 Appl. Surf. Sci. 457 1025

    CAS  Article  Google Scholar 

  31. 31

    Andrade J L, Oliveira A G, Mariucci V V G, Bento A C, Companhoni M V, Nakamura C V et al 2017 J. Alloys Compd. 729 978

    CAS  Article  Google Scholar 

  32. 32

    Fernandes D M, Silva R, Hechenleitner A A W, Radovanovic E, Melo M A C and Pineda E A G 2009 Mater. Chem. Phys. 115 110

    CAS  Article  Google Scholar 

  33. 33

    Bouhamed H and Baklouti S 2014 Powder Technol. 264 278

    CAS  Article  Google Scholar 

  34. 34

    Wang H, Wang F, Liao Q and Li X 2015 Ceram. Int. 41 4959

    CAS  Article  Google Scholar 

  35. 35

    Li J, Wu Y, Pan Y, Liu W and Guo J 2007 Ceram. Int. 33 919

    CAS  Article  Google Scholar 

  36. 36

    Boumaza A, Favaro L, Ledion J, Sattonnay G, Brubach J B, Berthet P et al 2009 J. Solid State Chem. 182 1171

    CAS  Article  Google Scholar 

  37. 37

    Repelin Y and Husson E 1990 Mat. Res. Bull. 25 611

    CAS  Article  Google Scholar 

  38. 38

    Dan’ko A, Rom M A, Sidelnikova N S, Nizhankovskiy S V, Budnikov A T, Grin’ L A et al 2008 Crystallogr. Rep. 53 1112

    Google Scholar 

  39. 39

    Goldman, Alex 1999 Handbook of modern ferromagnetic materials (The Kluwer international series in engineering and computer science; SECS 505) p 216, https://doi.org/10.1007/978-1-4615-4917-8

  40. 40

    Kim N, Bassiri R, Fejer M M and Stebbins J F 2014 J. Non-Cryst. Solids 405 1

    CAS  Article  Google Scholar 

  41. 41

    Ajamein H and Haghighi M 2016 Ceram. Inter. 42 17978

    CAS  Article  Google Scholar 

  42. 42

    Cunha G C, Romão L P C and Macedo Z S 2014 Powder Technol. 254 344

    CAS  Article  Google Scholar 

  43. 43

    Arier U O A and Tepehan F Z 2014 Compos. Part B: Eng. 58 147

    Article  CAS  Google Scholar 

  44. 44

    Costa T M H, Gallas M R, Benvenutri E V and Jornada J A H 1999 J. Phys. Chem. B 103 4278

    CAS  Article  Google Scholar 

  45. 45

    Aminzadeh A and Sarikhani-Fard H 1999 Spectrochim. Acta A 55 1421

    Article  Google Scholar 

  46. 46

    Porto S P S and Khishnan R S 1967 J. Chem. Phys. 47 1009

    CAS  Article  Google Scholar 

  47. 47

    Misra A, Bista H D, Navati M S, Thareja R K and Narayan J 2001 Mater. Sci. Eng. B 79 49

    Article  Google Scholar 

  48. 48

    Liu Y, Cheng B, Wang K, Ling G, Cai J, Song C et al 2014 Solid State Commun. 178 16

    CAS  Article  Google Scholar 

  49. 49

    Laha T, Balani K, Agarwal A, Patil S and Seal S 2005 Metall. Mat. Trans. A 36A 3001

    Google Scholar 

  50. 50

    Jbara A S, Othaman Z and Saeed M A 2017 J. Alloys Compd. 718 1

    CAS  Article  Google Scholar 

  51. 51

    Stojadinović S, Tadić N, Radić N, Stojadinović B, Grbić B and Vasilić R 2015 Surf. Coat. Technol. 276 573

    Article  CAS  Google Scholar 

  52. 52

    Zhang R, Yin P, Wang N and Guo L 2009 Solid State Sci. 11 865

    Article  CAS  Google Scholar 

  53. 53

    Chang H and Chang Y 2008 J. Mater. Process. Technol. 207 193

    CAS  Article  Google Scholar 

  54. 54

    Bajaj N S and Omanwar S K 2015 J. Sol-Gel Sci. Technol. 75 1

    CAS  Article  Google Scholar 

  55. 55

    Trinkler L, Berzina B, Jakimovica D, Grabis J and Steins I 2011 Opt. Mater. 33 817

    CAS  Article  Google Scholar 

  56. 56

    Trinkler L, Berzina B, Jevsjutina Z, Grabis J, Steins I and Baily C J 2012 Opt. Mater. 34 1553

    CAS  Article  Google Scholar 

  57. 57

    Kostyukov A I, Zhuzhgov A V, Kaichev V V, Rastorguev A A, Snytnikov V N and Snytnikov V N 2018 Opt. Mater. 75 757

    CAS  Article  Google Scholar 

  58. 58

    Pustovarov V A, Perevalov T V, Gritsenko V A, Smirnova T P and Yelisseyev A P 2011 Thin Solid Films 519 6319

    CAS  Article  Google Scholar 

  59. 59

    Amirsalari A, Shayesteh S F and Ghahrizjani R T 2017 Chin. Phys. B 26 036101

    Article  CAS  Google Scholar 

  60. 60

    Li P G, Lei M and Tang W H 2010 Mater. Lett. 64 161

    CAS  Article  Google Scholar 

  61. 61

    Shen Y, He W, Zhang D, Zhang X, Xue Y and Liu C 2011 J. Lumin. 131 2725

    CAS  Article  Google Scholar 

  62. 62

    Zhang Y, Yu J, Kahkoska A R and Gu Z 2017 Sensors 17 2

    CAS  Article  Google Scholar 

  63. 63

    Lee J, Kim J and Kim W J 2016 Chem. Mater. 28 6417

    CAS  Article  Google Scholar 

  64. 64

    Lamouri S, Hamidouche M, Bouaouadja N, Belhouchet H, Garnier V, Fantozzi G et al 2017 Boletín de la Sociedad Española de Cerámica y Vidrio 56 47

    Article  Google Scholar 

  65. 65

    Krishnamurithy G, Yahya N A, Mehrali M, Mehrali M, Mohan S, Murali M R et al 2016 Ceram. Inter. 42 18247

    CAS  Article  Google Scholar 

  66. 66

    Ravikanth M, Soujanya P, Manjunath K, Saraswathi T R and Ramachandran C R 2011 J. Oral Maxillofac. Pathol. 15 247

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the Department of Physics/UEM, to COMCAP/UEM, for providing the equipment used in this study and to CAPES and CNPq (Process no. 405381/2016-6) for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jéssica de Lara Andrade.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 944 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Lara Andrade, J., de Oliveira, A.G., Rodrigues, L.S. et al. Al2O3 nanoparticle polymorphs: effects of Zn2+ doping on the structural, optical and cytotoxic properties. Bull Mater Sci 44, 23 (2021). https://doi.org/10.1007/s12034-020-02308-y

Download citation

Keywords

  • Nanostructured materials
  • crystal structure
  • optical properties
  • biomedical applications