Abstract
Al2O3-Zn x% NPs, with x = 0, 1, 3, 5 or 10 mol% Zn2+ were synthesized by a modified sol–gel method. The influence of the insertion of Zn2+ dopant on the crystal lattice, morphology, optical and cytotoxic properties of Al2O3 was investigated. Rietveld refinement applied to DRX data revealed that the oxides are constituted by four crystalline phases: α-Al2O3, θ-Al2O3, δ-Al2O3 and α-Al2O3(*), and that the doping promoted changes in unit cell volume for all the crystalline phases. Raman signals indicated that the insertion of Zn2+ caused changes in the vibrations of bonds Al–O, mainly in tetrahedral sites of transition phases of Al2O3, which are preferentially occupied by Zn ions. The oxides exhibited photoluminescence emission in the visible and near-infrared region, but Al2O3-Zn 10% showed increased emission intensity in the visible region. The nanoparticles with spherical and elongated morphologies did not exhibit cytotoxic effects on L929 fibroblast cells.
Graphic abstract
Zn-doped Al2O3 nanoparticles were synthesized by a modified sol-gel method. The influence of the insertion of Zn2+ dopant on the crystal lattice, morphology, optical and cytotoxic properties of Al2O3 was investigated.

This is a preview of subscription content, access via your institution.








References
- 1
Piconi C and Maccauro G 2016 in Reference module in materials science and materials engineering Saleem Hashmi (ed) (Oxford: Elsevier) p 1
- 2
Radziun E, Wilczynska J D, Ksiazek I, Nowak K, Anuszewska E L, Kunicki A et al 2011 Toxicol. in Vitro 25 1694
- 3
Chagas L H, Carvalho G S G, San Gil R A S, Chiaro S S X, Leitão A A and Diniz R 2014 Mater. Res. Bull. 49 216
- 4
Pardo P and Alarcon J 2018 Ceram. Int. 44 11486
- 5
Zhang X, Pfeiffer S, Rutkowski P, Mokowska M, Kata D, Yang J et al 2020 Appl. Surf. Sci. 520 146304
- 6
Terzic A, Pezo L, Andric L and Mitic V V 2015 Ceram. Int. 41 11908
- 7
Kim H N and Lee S K 2013 Am. Mineral. 98 1198
- 8
Park E, Lee G, Yoon C, Jeong U, Kim Y, Cho M et al 2015 J. Appl. Toxicol. 36 424
- 9
Itou M, Fujiwara A and Uchino T 2009 J. Phys. Chem. C 113 20949
- 10
Zhang T, Zhou Y, Bu X, Wang Y, Zhang M and Hu J 2014 Ceram. Int. 40 13703
- 11
Mozalev A, Sakairi M, Takahashi H, Habazaki H and Hubalek J 2014 Thin Solid Films 550 486
- 12
Treccani L, Yvonne T, Lein K, Meder F, Pardun K and Rezwan K 2013 Acta Biomater. 9 7115
- 13
Lakade S H, Harde M T and Deshmukh P K 2019 Particul. Sci. Technol. 0272 6351
- 14
Nemade K R and Waghuley S A 2014 Ceram. Int. 40 6109
- 15
Mestres G, Espanol M, Xia W, Tenje M and Ott M 2016 ACS Omega 1 706
- 16
Periasamy V S, Athinarayanan J and Alshatwi A A 2016 Biotechnol. Appl. Biochem. 63 320
- 17
Choi J and Wang N S 2011 in Nanoparticles in biomedical applications and their safety concerns. In biomedical engineering from theory to applications R Fazel-Rezai (ed) (Rijeka: InTech Publisher) p 299
- 18
Mitragotri S and Lahann J 2009 Nat. Mater. 8 15
- 19
Dick M K, Miao J H and Limaiem F 2020 Histology, fibroblast (Treasure Island, FL: Stat Pearls Publishing)
- 20
Melo A, Bet A C, Assreuy J, Debacher N A and Soldi V J 2009 Braz. Chem. Soc. 20 1753
- 21
Serrano M C, Pagani R, Vallet-Regi M, Pena J, Ramila A, Izquierdo I et al 2004 Biomaterials 25 5603
- 22
ISO 1099355 2009 International standard ISO specification 10993-5: biological evaluation of medical devices – Part 5. Tests for in vitro cytotoxicity, Geneva, Switzerland
- 23
Lopes V R, Schmidtke M, Helena Fernandes M, Martins R and Vasconcelos V 2011 Toxicol. In Vitro 25 944
- 24
Wadajkar A S, Ahn C, Nguyen K T, Zhu Q and Komabayashi T 2014 ISRN Dentist. 2014 191068
- 25
Song Z, Tang H, Xiaoyong D, Xiang K, Cao A, Liu Y et al 2017 J. Nanosci. Nanotechnol. 17 2881
- 26
Kannan K, Radhika D, Sadasivuni K K, Reddy K R and Raghu A V 2020 Adv. Colloid Interface Sci. 281 102178
- 27
Wang Y, Luo F, Wei P, Zhou W and Zhu D 2015 J. Elec. Materi. 44 2353
- 28
Chen S, Cui X, Ding S, Sun Q, Nyberg T, Zhang S et al 2013 IEEE Electron. Device Lett. 34 1008
- 29
Wang H, Wei Y, Yang Y and Lee J 2005 J. Electron. Spectrosc. Relat. Phenom. 144–147 817
- 30
Weng Y, Liu H, Ji S, Huang Q, Wu H, Li Z et al 2018 Appl. Surf. Sci. 457 1025
- 31
Andrade J L, Oliveira A G, Mariucci V V G, Bento A C, Companhoni M V, Nakamura C V et al 2017 J. Alloys Compd. 729 978
- 32
Fernandes D M, Silva R, Hechenleitner A A W, Radovanovic E, Melo M A C and Pineda E A G 2009 Mater. Chem. Phys. 115 110
- 33
Bouhamed H and Baklouti S 2014 Powder Technol. 264 278
- 34
Wang H, Wang F, Liao Q and Li X 2015 Ceram. Int. 41 4959
- 35
Li J, Wu Y, Pan Y, Liu W and Guo J 2007 Ceram. Int. 33 919
- 36
Boumaza A, Favaro L, Ledion J, Sattonnay G, Brubach J B, Berthet P et al 2009 J. Solid State Chem. 182 1171
- 37
Repelin Y and Husson E 1990 Mat. Res. Bull. 25 611
- 38
Dan’ko A, Rom M A, Sidelnikova N S, Nizhankovskiy S V, Budnikov A T, Grin’ L A et al 2008 Crystallogr. Rep. 53 1112
- 39
Goldman, Alex 1999 Handbook of modern ferromagnetic materials (The Kluwer international series in engineering and computer science; SECS 505) p 216, https://doi.org/10.1007/978-1-4615-4917-8
- 40
Kim N, Bassiri R, Fejer M M and Stebbins J F 2014 J. Non-Cryst. Solids 405 1
- 41
Ajamein H and Haghighi M 2016 Ceram. Inter. 42 17978
- 42
Cunha G C, Romão L P C and Macedo Z S 2014 Powder Technol. 254 344
- 43
Arier U O A and Tepehan F Z 2014 Compos. Part B: Eng. 58 147
- 44
Costa T M H, Gallas M R, Benvenutri E V and Jornada J A H 1999 J. Phys. Chem. B 103 4278
- 45
Aminzadeh A and Sarikhani-Fard H 1999 Spectrochim. Acta A 55 1421
- 46
Porto S P S and Khishnan R S 1967 J. Chem. Phys. 47 1009
- 47
Misra A, Bista H D, Navati M S, Thareja R K and Narayan J 2001 Mater. Sci. Eng. B 79 49
- 48
Liu Y, Cheng B, Wang K, Ling G, Cai J, Song C et al 2014 Solid State Commun. 178 16
- 49
Laha T, Balani K, Agarwal A, Patil S and Seal S 2005 Metall. Mat. Trans. A 36A 3001
- 50
Jbara A S, Othaman Z and Saeed M A 2017 J. Alloys Compd. 718 1
- 51
Stojadinović S, Tadić N, Radić N, Stojadinović B, Grbić B and Vasilić R 2015 Surf. Coat. Technol. 276 573
- 52
Zhang R, Yin P, Wang N and Guo L 2009 Solid State Sci. 11 865
- 53
Chang H and Chang Y 2008 J. Mater. Process. Technol. 207 193
- 54
Bajaj N S and Omanwar S K 2015 J. Sol-Gel Sci. Technol. 75 1
- 55
Trinkler L, Berzina B, Jakimovica D, Grabis J and Steins I 2011 Opt. Mater. 33 817
- 56
Trinkler L, Berzina B, Jevsjutina Z, Grabis J, Steins I and Baily C J 2012 Opt. Mater. 34 1553
- 57
Kostyukov A I, Zhuzhgov A V, Kaichev V V, Rastorguev A A, Snytnikov V N and Snytnikov V N 2018 Opt. Mater. 75 757
- 58
Pustovarov V A, Perevalov T V, Gritsenko V A, Smirnova T P and Yelisseyev A P 2011 Thin Solid Films 519 6319
- 59
Amirsalari A, Shayesteh S F and Ghahrizjani R T 2017 Chin. Phys. B 26 036101
- 60
Li P G, Lei M and Tang W H 2010 Mater. Lett. 64 161
- 61
Shen Y, He W, Zhang D, Zhang X, Xue Y and Liu C 2011 J. Lumin. 131 2725
- 62
Zhang Y, Yu J, Kahkoska A R and Gu Z 2017 Sensors 17 2
- 63
Lee J, Kim J and Kim W J 2016 Chem. Mater. 28 6417
- 64
Lamouri S, Hamidouche M, Bouaouadja N, Belhouchet H, Garnier V, Fantozzi G et al 2017 Boletín de la Sociedad Española de Cerámica y Vidrio 56 47
- 65
Krishnamurithy G, Yahya N A, Mehrali M, Mehrali M, Mohan S, Murali M R et al 2016 Ceram. Inter. 42 18247
- 66
Ravikanth M, Soujanya P, Manjunath K, Saraswathi T R and Ramachandran C R 2011 J. Oral Maxillofac. Pathol. 15 247
Acknowledgments
We are grateful to the Department of Physics/UEM, to COMCAP/UEM, for providing the equipment used in this study and to CAPES and CNPq (Process no. 405381/2016-6) for financial support.
Author information
Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
de Lara Andrade, J., de Oliveira, A.G., Rodrigues, L.S. et al. Al2O3 nanoparticle polymorphs: effects of Zn2+ doping on the structural, optical and cytotoxic properties. Bull Mater Sci 44, 23 (2021). https://doi.org/10.1007/s12034-020-02308-y
Received:
Accepted:
Published:
Keywords
- Nanostructured materials
- crystal structure
- optical properties
- biomedical applications