Bi3+-doped Ba2Y1−xLuxNbO6:Bi3+ (0 ≤ x ≤ 1.0) solid solution phosphors: tunable photoluminescence and application for white LEDs

Abstract

In this work, we use the conventional high temperature solid-state reaction to prepare Bi3+-doped Ba2Y1−xLuxNbO6:Bi3+ (0 ≤ x ≤ 1.0) solid solution phosphors. To study the Lu3+ content-dependent structural evolution and photoluminescence (PL) properties of the samples, the powder X-ray diffraction (pXRD), density functional theoretical (DFT) calculations, UV–visible diffuse reflectance and PL spectra are used. We find that all the phosphors are double-perovskite structural phase with a cubic space group of \({\rm{Fm}}{\bar{3}}{\rm{m}}\), and the XRD positions shift to higher diffraction angle with the increase in Lu3+ content. The emission positions of the samples tune from 447 to 493 nm, which are due to the crystal field modulation around the Bi3+ ion. Among the obtained samples, the Ba2Y0.7Lu0.3NbO6:Bi3+ shows the best quantum efficiency (QE) of 57%. By using the optimal Ba2Y0.7Lu0.3NbO6:Bi3+ solid solution phosphor, the red-emitting CaAlSiN:Eu2+ phosphor, and a commercial 365 nm UV LED chip, we have fabricated a white LED device with the CIE coordinates at (0.378, 0.373), colour temperature (CT) of 3513 K, colour rendering index (CRI) of 67.1 and luminous efficiency of 39 lm W−1.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. 1

    Miao M S, Brgoch J, Krishnapriyan A, Goldman A, Kurzman J A and Seshadri R 2013 Inorg. Chem. 52 8183

    CAS  Article  Google Scholar 

  2. 2

    Srivastava A M, Comanzo H A and Brik M G 2017 J. Lumin. 192 620

    CAS  Article  Google Scholar 

  3. 3

    Huang A J, Yang Z W, Yu C Y, Chai Z Z, Qiu J B and Song Z G 2016 Mater. Lett. 185 440

    CAS  Article  Google Scholar 

  4. 4

    Rambabu U and Han S D 2013 Ceram. Int. 39 701

    CAS  Article  Google Scholar 

  5. 5

    Wang D Y, Tang Z B, Khan W U and Wang Y H 2017 Chem. Eng. J. 313 1082

    CAS  Article  Google Scholar 

  6. 6

    Li H M, Pang R, Liu G Y, Sun W Z, Li D, Jiang L H et al 2018 Inorg. Chem. 57 12303

    CAS  Article  Google Scholar 

  7. 7

    Kang F W, Peng M Y, Yang X B, Dong G P, Nie G C, Liang W J et al 2014 J. Mater. Chem. C 2 6068

    CAS  Article  Google Scholar 

  8. 8

    Xing G C, Feng Y X, Pan M, Wei Y, Li G G, Dang P P et al 2018 J. Mater. Chem. C 6 13136

    CAS  Article  Google Scholar 

  9. 9

    Kang F W, Sun G H, Boutinaud P, Gao F, Wang Z H, Lu J et al 2019 J. Mater. Chem. C 7 9865

    CAS  Article  Google Scholar 

  10. 10

    Kang F W, Sun G H, Wang A Q, Xiao X F, Li Y Y and Lu J 2018 ACS Appl. Mater. Interfaces 10 36157

    CAS  Article  Google Scholar 

  11. 11

    Balcells L, Navarro J, Bibes M, Roig A, Martínez B and Fontcuberta J 2001 Appl. Phys. Lett. 78 781

    CAS  Article  Google Scholar 

  12. 12

    Mao X, Sun L, Wu T, Chu T S, Deng W Q and Han K L 2018 J. Phys. Chem. C 122 7670

    CAS  Article  Google Scholar 

  13. 13

    Pan Q, Hu H C, Zou Y T, Chen M, Wu L Z, Yuan X L et al 2017 J. Mater. Chem. C 5 10947

    CAS  Article  Google Scholar 

  14. 14

    Zhang H W, Fu X Y, Niu S Y and Xin Q 2008 J. Alloys Compd. 459 103

    CAS  Article  Google Scholar 

  15. 15

    Sokólska I and Kück S 2001 Chem. Phys. 270 355

    Article  Google Scholar 

  16. 16

    Ueda K, Tanaka S, Yoshino T, Shimizu Y H and Honma T 2019 Inorg. Chem. 58 10890

    CAS  Article  Google Scholar 

  17. 17

    Tan Z F, Li J H, Zhang C, Li Z, Hu Q S, Xiao Z W et al 2018 Adv. Funct. Mater. 28 1801131

    Article  Google Scholar 

  18. 18

    Fu H L, Wang M M, Li P, Jiang S, Hu W, Guo X T et al 2019 IEEE T. Ind. Inform. 15 6531

    Article  Google Scholar 

  19. 19

    Yuan D L, Zhang C, Tang S F, Sun M T, Zhang Y T, Rao Y D et al 2020 Sci. Total Environ. 727 138773

    CAS  Article  Google Scholar 

  20. 20

    Kresse G and Hafner J 1993 Phys. Rev. B 47 558

    CAS  Article  Google Scholar 

  21. 21

    Kresse G and Joubert D 1999 Phys. Rev. B 59 1758

    CAS  Article  Google Scholar 

  22. 22

    Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    CAS  Article  Google Scholar 

  23. 23

    Xie T P, Zhang L, Guo Y, Wang X and Wang Y 2019 Ceram. Int. 45 3502

    CAS  Article  Google Scholar 

  24. 24

    Cavalli E, Angiuli F, Mezzadri F, Trevisani M, Bettinelli M, Boutinaud P et al 2014 J. Phys. Condens. Matter 26 385503

    Article  Google Scholar 

  25. 25

    Michael L M, Michael N S, Megan B, Heather B, Stephen L M and Jessica N M 2011 Appl. Spectrosc. Rev. 46 140

    Article  Google Scholar 

  26. 26

    Dirk V, Stefan C J M and René A J J 2009 Adv. Funct. Mater. 19 1939

    Article  Google Scholar 

  27. 27

    Kang F W, Yang X B, Peng M Y, Wondraczek L, Ma Z J, Zhang Q Y et al 2014 J. Phys. Chem. C 118 7515

    CAS  Article  Google Scholar 

  28. 28

    Chen H, Ding J Y, Ding X, Wang X C, Cao Y X, Zhao Z Y et al 2017 Inorg. Chem. 56 10904

    CAS  Article  Google Scholar 

  29. 29

    Ji X Y, Zhang J L, Liao S Z, Zhang X G, Yang Z Y, Wang Z L et al 2018 Chem. Mater. 30 5137

    CAS  Article  Google Scholar 

  30. 30

    Yang J, Zhang J W, Gao Z Y, Tao M X, Dang P P, Wei Y et al 2019 Inorg. Chem. Front. 6 2004

    CAS  Article  Google Scholar 

  31. 31

    Kristin A D, Jakoah B, Michael W G, Alexander M, Ralf P, Holger W et al 2014 Chem. Mater. 26 2275

    Article  Google Scholar 

  32. 32

    Duan C, Yu Y, Xiao J, Zhang X, Li L, Yang P et al 2020 Sci. China Mater. 63 667

    Article  Google Scholar 

  33. 33

    Duan C, Yu Y, Xiao J, Li Y, Yang P, Hu F et al 2020 Green Energy Environ., https://doi.org/10.1016/j.gee.2020.04.006

    Article  Google Scholar 

  34. 34

    Yu F K, Wang Y, Ma H R and Zhou M H 2020 Sep. Purif. Technol. 248 117022

  35. 35

    Duan C, Yu Y, Li J, Li L, Huang B, Chen D et al 2021 Sci. China Mater

  36. 36

    Tang S F, Wang Z T, Yuan D L, Zhang C, Rao Y D, Wang Z B et al 2020 J. Clean. Prod. 268 122253

    CAS  Article  Google Scholar 

  37. 37

    Tang S F, Tang J C, Yuan D L, Wang Z T, Zhang Y T and Rao Y D 2020 RSC Adv. 10 17627

    CAS  Article  Google Scholar 

  38. 38

    Jiang N, Liu Y, Yu X N, Zhang H B and Wang M M 2020 Int. J. Electrochem. Sci. 15 5520

  39. 39

    Yuan D L, Sun M T, Zhao M Z, Tamg S F, Qi J B, Zhang X Y et al 2020 Int. J. Electrochem. Sci. 15 8761

  40. 40

    Yu F, Chen Y, Pan Y, Yang Y and Ma H 2020 Sep. Purif. Technol. 241 116695

  41. 41

    Duan C, Dong L, Li F, Xie Y, Huang B, Wang K et al 2020 Ind. Eng. Chem. Res. 59 18857

Download references

Acknowledgement

This work is funded by the project of Southwest University of Science and Technology Natural Science Foundation (No. 18zx7125).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xinxing Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, C., Jiang, C., Zhao, J. et al. Bi3+-doped Ba2Y1−xLuxNbO6:Bi3+ (0 ≤ x ≤ 1.0) solid solution phosphors: tunable photoluminescence and application for white LEDs. Bull Mater Sci 44, 32 (2021). https://doi.org/10.1007/s12034-020-02307-z

Download citation

Keywords

  • Bi3+
  • perovskite
  • tunable photoluminescence
  • white LEDs