Skip to main content
Log in

Structural, vibrational and microwave properties of xLa(Mg1/2Ti1/2)O3–(1 − x)Ba(Mg1/3Nb2/3)O3

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Vibrational and microwave dielectric properties of xLa(Mg1/2Ti1/2)O3–(1−x)Ba(Mg1/3Nb2/3)O3 (x = 0.0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1.0) synthesized by the solid-state reaction technique are investigated. The Rietveld refinement of the X-ray diffraction (XRD) data confirms that Ba(Mg1/3Nb2/3)O3 (x = 0.0) adopts the 1:2-ordered structure with trigonal P-3m1 space group, whereas La(Mg1/2Ti1/2)O3 (x = 1) has monoclinic P21/n crystal structure. Both the materials have single phase crystal structure. For x = 0.1, the sample is found to have double phase. Further, with the increase in the value of x, the crystal structure becomes monoclinic P21/n. The vibrational properties of the materials are studied by the Raman spectroscopy and are correlated with the structural parameters. All the materials show high dielectric constant (εr > 35) at microwave range. The factors affecting the microwave dielectric properties are discussed based on the vibrational and structural data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Cava R J 2001 J. Mater. Chem. 11 54

    Article  CAS  Google Scholar 

  2. Desu S B and O’Bryan H M 1985 J. Am. Ceram. Soc. 68 546

    Article  CAS  Google Scholar 

  3. Tagantsev A K, Sherman V O, Astafiev K F, Venkatesh J and Setter N 2003 J. Electroceram. 11 5

    Article  CAS  Google Scholar 

  4. Akbas M A and Davies P K 1998 J. Am. Ceram. Soc. 81 670

    Article  CAS  Google Scholar 

  5. Wu J Y and Bian J J 2013 Ceram. Int. 30 3614

    Google Scholar 

  6. Wang S F, Wang Y R, Liu C Y and Hsieh W S 2012 Ceram. Int. 38 1127

    Article  CAS  Google Scholar 

  7. Kim B K, Hamaguchi H, Kim I T and Hong K S 1995 J. Am. Ceram. Soc. 78 3117

    Article  CAS  Google Scholar 

  8. Matsumoto H, Tamura H and Wakino K 1991 Jpn. J. Appl. Phys. 30 2347

    Article  CAS  Google Scholar 

  9. Veres A, Marinel S and Roulland F 2005 J. Eur. Ceram. Soc. 25 2759

    Article  CAS  Google Scholar 

  10. Zhang J, Yue Z and Li L 2018 J. Am. Ceram. Soc. 101 1974

    Article  CAS  Google Scholar 

  11. Sun T L and Chena X M 2015 AIP Adv. 5 017106

    Article  Google Scholar 

  12. Munpakdee A, Tontragoon J, Siriwtayakorn K and Tunkasiri T 2003 J. Mater. Sci. Lett. 22 1307

    Article  CAS  Google Scholar 

  13. Galasso F and Pyle J 1963 J. Phys. Chem. 67 1561

    Article  CAS  Google Scholar 

  14. Moreira R L, Andreeta M R B, Hernandes A C and Dias A 2005 Cryst. Growth Des. 5 1457

    Article  CAS  Google Scholar 

  15. Dias A and Moreira R L 2003 J. Appl. Phys. 94 3414

    Article  CAS  Google Scholar 

  16. Harshe G, Bhalla A S and Cross L E 1994 Mater. Lett. 18 173

    Article  CAS  Google Scholar 

  17. Avdeev M, Seabra M P and Ferreira V M 2002 J. Mater. Res. 15 1112

    Article  Google Scholar 

  18. Li B J, Wang S Y, Huang C L, Lin Y H and Chen Y B 2014 J. Ceram. Soc. Jpn. 122 951

    Article  Google Scholar 

  19. Seabra M P, Salak A N, Ferreira V M, Ribeiro J L and Vieira L G 2004 J. Eur. Ceram. Soc. 24 2995

    Article  CAS  Google Scholar 

  20. Khalyavin D D, Salak A N, Seabra M P, Senos A M R, Mantas P Q and Ferreira V M 2006 Mater. Res. Bull. 41 167

    Article  CAS  Google Scholar 

  21. Carvaja J R 1993 Physica B 192 55

    Article  Google Scholar 

  22. Chen M Y, Chia C T, Lin I N, Lin L J, Ahn C W and Nahm S 2006 J. Eur. Ceram. Soc. 26 1965

    Article  CAS  Google Scholar 

  23. Chia C T, Chen Y C, Cheng H F and Lin I N 2003 J. Appl. Phys. 94 3360

    Article  CAS  Google Scholar 

  24. Rousseau D L, Bauman R P and Porto S P S 1981 J. Raman Spectrosc. 10 253

    Article  CAS  Google Scholar 

  25. Dutta A, Kumari P and Sinha T P 2015 Electron. Mater. Lett. 11 775

    Article  CAS  Google Scholar 

  26. Reaney I M, Iqbal Y, Zheng H, Hughes H, Iddles D, Muir D et al 2005 J. Eur. Ceram. Soc. 25 1183

    Article  CAS  Google Scholar 

  27. Zheng H, Bagshaw H, de Gyorgyfalva G D C C, Reaney I M, Ubic R and Yarwood J 2003 J. Appl. Phys. 94 2948

    Article  CAS  Google Scholar 

  28. Khalam L A, Sreemoolanathan H, Ratheesh R, Mohanan P and Sebastian M T 2004 Mater. Sci. Eng. B 107 264

    Article  Google Scholar 

  29. Seabra M P, Avdeev M, Ferreira V M, Pullar R C and Alford N M 2003 J. Eur. Ceram. Soc. 23 2403

Download references

Acknowledgement

Ram Awdhesh Kumar thanks CSIR, New Delhi, for the award of NET-JRF (09/015(0486)/2015-EMR-I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alo Dutta.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R.A., Dutta, A. & Sinha, T.P. Structural, vibrational and microwave properties of xLa(Mg1/2Ti1/2)O3–(1 − x)Ba(Mg1/3Nb2/3)O3. Bull Mater Sci 44, 36 (2021). https://doi.org/10.1007/s12034-020-02304-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02304-2

Keywords

Navigation