Effects of TiO2 phase and nanostructures as photoanode on the performance of dye-sensitized solar cells

Abstract

In this study, different titanium dioxide (TiO2) nanostructures and phase were investigated as photoanode film for application in dye-sensitized solar cells. Rutile TiO2 nanorods (NRs)-nanotrees (NTs) and TiO2 NRs-microcauliflowers (MCFs) were synthesized via hydrothermal method for different time. The mixed phase of rutile-anatase film was fabricated by applying TiO2 nanoparticles paste on the synthesized TiO2 NRs-NTs via squeegee method. The counter electrode film was fabricated by spraying deposition and sputtering methods of reduced graphene oxide–multi-walled carbon nanotubes and platinum, respectively. Solar simulator measurement revealed that higher energy conversion efficiency (1.420%) and short-circuit current density (3.584 mA cm−2) were achieved by using rutile TiO2 NRs-MCFs film. The utilization of a thick rutile film with microparticle structures increases dye adsorption, and thus enhances the electron excitation.

Graphic abstract

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. 1

    Kakiage K, Aoyama Y, Yano T, Oya K, Fujisawa J and Hanaya M 2015 Chem. Commun. 51 15894

    CAS  Article  Google Scholar 

  2. 2

    O’Regan B and Grätzel M 1991 Nature 353 737

    Article  Google Scholar 

  3. 3

    Calogero G, Bartolotta A, Marco G D, Carlo A D and Bonaccorso F 2015 Chem. Soc. Rev. 44 3244

    CAS  Article  Google Scholar 

  4. 4

    Mehmood U, Malaibari Z, Rabani F A, Rehman A U, Ahmad S H A, Atieh M A et al 2016 Electrochim. Acta 203 162

    CAS  Article  Google Scholar 

  5. 5

    Mehmood U, Rahman S, Harrabi K, Hussein I A and Reddy B V S 2014 Adv. Mater. Sci. Eng. 2014 1

    Article  Google Scholar 

  6. 6

    Suriani A B, Muqoyyanah, Mohamed A, Mamat M H, Othman M H D, Ahmad M K et al 2019 Nano-Struct. Nano-Objects 18 100314

    CAS  Article  Google Scholar 

  7. 7

    Xie Y, Zhou X, Mi H, Ma J, Yang J and Cheng J 2018 Appl. Surf. Sci. 434 1144

    CAS  Article  Google Scholar 

  8. 8

    Cao Y, Li Z, Wang Y, Zhang T, Li Y, Liu X et al 2016 J. Electron. Mater. 45 4989

    CAS  Article  Google Scholar 

  9. 9

    Ahmad M K, Mohan V M and Murakami K 2015 J. Sol-Gel Sci. Technol. 73 655

    CAS  Article  Google Scholar 

  10. 10

    Guai G H, Song Q L, Guo C X, Lu Z S, Chen T, Ng C M et al 2012 Sol. Energy 86 2041

    CAS  Article  Google Scholar 

  11. 11

    Suriani A B, Muqoyyanah, Mohamed A, Othman M H D, Mamat M H, Hashim N et al 2018 J. Mater. Sci.: Mater. Electron. 29 10723

  12. 12

    Popoola I K, Gondal M A, Alghamdi J M and Qahtan T F 2018 Sci. Rep. 8 12864

    Article  Google Scholar 

  13. 13

    Kim S B, Park J Y, Kim C S, Okuyama K, Lee S E, Jang H D et al 2015 J. Phys. Chem. C 119 16552

    CAS  Article  Google Scholar 

  14. 14

    Luque A and Hegedus S 2011 (second) Handbook of photovoltaic science and engineering (United Kingdom: John Wiley & Sons, Ltd.)

    Google Scholar 

  15. 15

    Quintana M, Edvinsson T, Hagfeldt A and Boschloo G 2007 J. Phys. Chem. C 111 1035

    CAS  Article  Google Scholar 

  16. 16

    Wang J, Qu S, Zhong Z, Wang S, Liu K and Hu A 2014 Prog. Nat. Sci.: Mater. Int. 24 588

    CAS  Article  Google Scholar 

  17. 17

    Wu W, Liao J, Chen H, Yu X, Su C and Kuang D 2012 J. Mater. Chem. 22 18057

    CAS  Article  Google Scholar 

  18. 18

    Zhao P, Cheng P, Wang B, Yao S, Sun P, Liu F et al 2014 RSC Adv. 4 64737

    CAS  Article  Google Scholar 

  19. 19

    Mary J S S, Princy P, Steffy J A J, Kumar P N, Bachan N and Shyla J M 2016 Int. J. Tech. Res. Appl. 37 60

    Google Scholar 

  20. 20

    Xu J, Wu S, Ri J H, Jin J and Peng T 2016 J. Power Sources 327 77

    CAS  Article  Google Scholar 

  21. 21

    Xu J, Li K, Wu S, Shi W and Peng T 2015 J. Mater. Chem. A 3 7453

    CAS  Article  Google Scholar 

  22. 22

    Peng T, Xu J and Chen R 2020 Chem. Phys. Lett. 738 136902

    CAS  Article  Google Scholar 

  23. 23

    Hafez H, Lan Z, Li Q and Wu J 2010 Nanotechnol. Sci. Appl. 3 45

    CAS  Article  Google Scholar 

  24. 24

    Zheng D, Xiong J, Guo P, Li Y and Gu H 2016 J. Nanosci. Nanotechnol. 16 613

    CAS  Article  Google Scholar 

  25. 25

    Desai N D, Khot K V, Dongale T, Musselman K P and Bhosale P N 2019 J. Alloys Compd. 790 1001

    CAS  Article  Google Scholar 

  26. 26

    Suriani A B, Muqoyyanah, Mohamed A, Mamat M H, Hashim N, Isa I M et al 2018 Opt. - Int. J. Light Electron Opt. 158 522

  27. 27

    Liu B and Aydil E S 2009 J. Am. Chem. Soc. 131 3985

    CAS  Article  Google Scholar 

  28. 28

    Meng L, Li C and Dos Santos M P 2011 J. Inorg. Organomet. Polym. Mater. 21 770

    CAS  Article  Google Scholar 

  29. 29

    Ahmad M K and Murakami K 2015 Appl. Mech. Mater. 773–774 725

    Article  Google Scholar 

  30. 30

    Yan J, Wu G, Guan N, Li L, Li Z and Cao X 2013 Phys. Chem. Chem. Phys. 15 10978

    CAS  Article  Google Scholar 

  31. 31

    Luo Z, Poyraz A S, Kuo C, Miao R, Meng Y, Chen S et al 2015 Chem. Mater. 27 6

    CAS  Article  Google Scholar 

  32. 32

    Meier R J 2005 Chem. Soc. Rev. 34 743

    CAS  Article  Google Scholar 

  33. 33

    Ahmad M K, Mokhtar S M, Soon C F, Nafarizal N, Suriani A B, Mohamed A et al 2016 J. Mater. Sci.: Mater. Electron. 27 7920

    CAS  Google Scholar 

  34. 34

    Zhou W, Liu X, Cui J, Liu D, Li J, Jiang H et al 2011 CrystEngComm 13 4557

    CAS  Article  Google Scholar 

  35. 35

    Lei J, Li H, Zhang J and Anpo M 2016 in Low-dimensional and nanostructured materials and devices H Ūnlū et al (eds) (Switzerland: Springer) p 423

  36. 36

    Wu C, Yue Y, Deng X, Hua W and Gao Z 2004 Catal. Today 93–95 863

    Article  Google Scholar 

  37. 37

    Jiang W, Liu H, Yin L, Shi Y, Chen B, Jiang W et al 2015 Electrochim. Acta 176 1036

    CAS  Article  Google Scholar 

  38. 38

    Wang H, Bai Y, Wu Q, Zhou W, Zhang H, Li J et al 2011 Phys. Chem. Chem. Phys. 13 7008

    CAS  Article  Google Scholar 

  39. 39

    Kosyachenko L (ed) 2011 Solar cell: dye-sensitized devices (Croatia: InTech) p 192

  40. 40

    Keshavarzi R, Mirkhani V, Moghadam M, Tangestaninejad S and Mohammadpoor-Baltork M 2015 Langmuir 31 11659

    CAS  Article  Google Scholar 

  41. 41

    Dahlan D, Md Saad S K, Berli A U, Bajili A and Umar A A 2017 Physica E 91 185

    CAS  Article  Google Scholar 

  42. 42

    Tsai J K, Hsu W D, Wu T C, Meen T H and Chong W J 2013 Nanoscale Res. Lett. 8 1

    Article  Google Scholar 

  43. 43

    Hwang S, Batmunkh M, Nine M J, Chung H and Jeong H 2015 Chem. Phys. Chem. 16 53

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We would like to express our appreciation to the Fundamental Research Grant Scheme (Grant Code: 2015-0154-102-02) for the financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A B Suriani.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Muqoyyanah, Suriani, A.B., Mohamed, A. et al. Effects of TiO2 phase and nanostructures as photoanode on the performance of dye-sensitized solar cells. Bull Mater Sci 44, 10 (2021). https://doi.org/10.1007/s12034-020-02302-4

Download citation

Keywords

  • TiO2
  • nanotrees
  • microcauliflowers
  • phase
  • efficiency
  • DSSCs