Abstract
In this study, different titanium dioxide (TiO2) nanostructures and phase were investigated as photoanode film for application in dye-sensitized solar cells. Rutile TiO2 nanorods (NRs)-nanotrees (NTs) and TiO2 NRs-microcauliflowers (MCFs) were synthesized via hydrothermal method for different time. The mixed phase of rutile-anatase film was fabricated by applying TiO2 nanoparticles paste on the synthesized TiO2 NRs-NTs via squeegee method. The counter electrode film was fabricated by spraying deposition and sputtering methods of reduced graphene oxide–multi-walled carbon nanotubes and platinum, respectively. Solar simulator measurement revealed that higher energy conversion efficiency (1.420%) and short-circuit current density (3.584 mA cm−2) were achieved by using rutile TiO2 NRs-MCFs film. The utilization of a thick rutile film with microparticle structures increases dye adsorption, and thus enhances the electron excitation.
Graphic abstract

This is a preview of subscription content, access via your institution.
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.





References
- 1
Kakiage K, Aoyama Y, Yano T, Oya K, Fujisawa J and Hanaya M 2015 Chem. Commun. 51 15894
- 2
O’Regan B and Grätzel M 1991 Nature 353 737
- 3
Calogero G, Bartolotta A, Marco G D, Carlo A D and Bonaccorso F 2015 Chem. Soc. Rev. 44 3244
- 4
Mehmood U, Malaibari Z, Rabani F A, Rehman A U, Ahmad S H A, Atieh M A et al 2016 Electrochim. Acta 203 162
- 5
Mehmood U, Rahman S, Harrabi K, Hussein I A and Reddy B V S 2014 Adv. Mater. Sci. Eng. 2014 1
- 6
Suriani A B, Muqoyyanah, Mohamed A, Mamat M H, Othman M H D, Ahmad M K et al 2019 Nano-Struct. Nano-Objects 18 100314
- 7
Xie Y, Zhou X, Mi H, Ma J, Yang J and Cheng J 2018 Appl. Surf. Sci. 434 1144
- 8
Cao Y, Li Z, Wang Y, Zhang T, Li Y, Liu X et al 2016 J. Electron. Mater. 45 4989
- 9
Ahmad M K, Mohan V M and Murakami K 2015 J. Sol-Gel Sci. Technol. 73 655
- 10
Guai G H, Song Q L, Guo C X, Lu Z S, Chen T, Ng C M et al 2012 Sol. Energy 86 2041
- 11
Suriani A B, Muqoyyanah, Mohamed A, Othman M H D, Mamat M H, Hashim N et al 2018 J. Mater. Sci.: Mater. Electron. 29 10723
- 12
Popoola I K, Gondal M A, Alghamdi J M and Qahtan T F 2018 Sci. Rep. 8 12864
- 13
Kim S B, Park J Y, Kim C S, Okuyama K, Lee S E, Jang H D et al 2015 J. Phys. Chem. C 119 16552
- 14
Luque A and Hegedus S 2011 (second) Handbook of photovoltaic science and engineering (United Kingdom: John Wiley & Sons, Ltd.)
- 15
Quintana M, Edvinsson T, Hagfeldt A and Boschloo G 2007 J. Phys. Chem. C 111 1035
- 16
Wang J, Qu S, Zhong Z, Wang S, Liu K and Hu A 2014 Prog. Nat. Sci.: Mater. Int. 24 588
- 17
Wu W, Liao J, Chen H, Yu X, Su C and Kuang D 2012 J. Mater. Chem. 22 18057
- 18
Zhao P, Cheng P, Wang B, Yao S, Sun P, Liu F et al 2014 RSC Adv. 4 64737
- 19
Mary J S S, Princy P, Steffy J A J, Kumar P N, Bachan N and Shyla J M 2016 Int. J. Tech. Res. Appl. 37 60
- 20
Xu J, Wu S, Ri J H, Jin J and Peng T 2016 J. Power Sources 327 77
- 21
Xu J, Li K, Wu S, Shi W and Peng T 2015 J. Mater. Chem. A 3 7453
- 22
Peng T, Xu J and Chen R 2020 Chem. Phys. Lett. 738 136902
- 23
Hafez H, Lan Z, Li Q and Wu J 2010 Nanotechnol. Sci. Appl. 3 45
- 24
Zheng D, Xiong J, Guo P, Li Y and Gu H 2016 J. Nanosci. Nanotechnol. 16 613
- 25
Desai N D, Khot K V, Dongale T, Musselman K P and Bhosale P N 2019 J. Alloys Compd. 790 1001
- 26
Suriani A B, Muqoyyanah, Mohamed A, Mamat M H, Hashim N, Isa I M et al 2018 Opt. - Int. J. Light Electron Opt. 158 522
- 27
Liu B and Aydil E S 2009 J. Am. Chem. Soc. 131 3985
- 28
Meng L, Li C and Dos Santos M P 2011 J. Inorg. Organomet. Polym. Mater. 21 770
- 29
Ahmad M K and Murakami K 2015 Appl. Mech. Mater. 773–774 725
- 30
Yan J, Wu G, Guan N, Li L, Li Z and Cao X 2013 Phys. Chem. Chem. Phys. 15 10978
- 31
Luo Z, Poyraz A S, Kuo C, Miao R, Meng Y, Chen S et al 2015 Chem. Mater. 27 6
- 32
Meier R J 2005 Chem. Soc. Rev. 34 743
- 33
Ahmad M K, Mokhtar S M, Soon C F, Nafarizal N, Suriani A B, Mohamed A et al 2016 J. Mater. Sci.: Mater. Electron. 27 7920
- 34
Zhou W, Liu X, Cui J, Liu D, Li J, Jiang H et al 2011 CrystEngComm 13 4557
- 35
Lei J, Li H, Zhang J and Anpo M 2016 in Low-dimensional and nanostructured materials and devices H Ūnlū et al (eds) (Switzerland: Springer) p 423
- 36
Wu C, Yue Y, Deng X, Hua W and Gao Z 2004 Catal. Today 93–95 863
- 37
Jiang W, Liu H, Yin L, Shi Y, Chen B, Jiang W et al 2015 Electrochim. Acta 176 1036
- 38
Wang H, Bai Y, Wu Q, Zhou W, Zhang H, Li J et al 2011 Phys. Chem. Chem. Phys. 13 7008
- 39
Kosyachenko L (ed) 2011 Solar cell: dye-sensitized devices (Croatia: InTech) p 192
- 40
Keshavarzi R, Mirkhani V, Moghadam M, Tangestaninejad S and Mohammadpoor-Baltork M 2015 Langmuir 31 11659
- 41
Dahlan D, Md Saad S K, Berli A U, Bajili A and Umar A A 2017 Physica E 91 185
- 42
Tsai J K, Hsu W D, Wu T C, Meen T H and Chong W J 2013 Nanoscale Res. Lett. 8 1
- 43
Hwang S, Batmunkh M, Nine M J, Chung H and Jeong H 2015 Chem. Phys. Chem. 16 53
Acknowledgements
We would like to express our appreciation to the Fundamental Research Grant Scheme (Grant Code: 2015-0154-102-02) for the financial support.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Muqoyyanah, Suriani, A.B., Mohamed, A. et al. Effects of TiO2 phase and nanostructures as photoanode on the performance of dye-sensitized solar cells. Bull Mater Sci 44, 10 (2021). https://doi.org/10.1007/s12034-020-02302-4
Received:
Accepted:
Published:
Keywords
- TiO2
- nanotrees
- microcauliflowers
- phase
- efficiency
- DSSCs