Modelling experimental parameters for fabrication of nanofibres using Taguchi optimization by an electrospinning machine

Abstract

In this research study, a photo-electrospinning device was designed and manufactured to produce nanofibres (NFs) by using an optical polymerization method. For this purpose, an electrospinning machine was designed and optimized. Various parameters such as voltage, speed of collector and distance were investigated on the uniformity and diameter of polycaprolactone fibres. Therefore, a Taguchi experimental design was used to optimize the diameter of the fibres. Nine experiments were conducted using scanning electron microscopy to study the surface morphology of the obtained fibres. The best conditions for producing NFs include: voltage \(=\) 15 V, speed of collector \(=\) 600 rpm and distance \(=\) 20 cm.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Yu Z, Xu C, Yuan K, Gan X, Zhou H, Wang X et al 2018 Ceram. Int.44 9454

    CAS  Article  Google Scholar 

  2. 2.

    Kikuchi T, Nishinaga O, Nakajima D, Kawashima J, Natsui S, Sakaguchi N et al 2014 Sci. Rep.4 7411

  3. 3.

    Al-Saleh M H and Sundararaj U 2009 Carbon47 2

  4. 4.

    Ozkan T, Naraghi M and Chasiotis I 2010 Carbon48 239

    CAS  Article  Google Scholar 

  5. 5.

    Liu C, Tan Y, Liu Y, Shen K, Peng W, Niu X et al 2016 J. Energy Chem.25 587

    Article  Google Scholar 

  6. 6.

    Na K H, Kim W T, Park D C, Shin H G, Lee S H, Park J et al 2018 Thin Solid Films660 358

    CAS  Article  Google Scholar 

  7. 7.

    Pal D B, Singh P and Mishra P K 2017 J. Alloys Compd.694 10

    CAS  Article  Google Scholar 

  8. 8.

    Cramariuc B, Cramariuc R, Scarlet R, Rozemarie Manea L, Lupu L and Cramariuc O 2013 J. Electrostat.71 189

    CAS  Article  Google Scholar 

  9. 9.

    Kong L and Ziegler G R 2014 Food Hydrocolloids36 20

    CAS  Article  Google Scholar 

  10. 10.

    Gee S, Johnson B and Smith A L 2018 J. Membr. Sci.563 804

    CAS  Article  Google Scholar 

  11. 11.

    Nakhowong R and Chueachot R 2017 J. Alloys Compd.715 390

    CAS  Article  Google Scholar 

  12. 12.

    Panda P K 2013 Ceram. Int.39 4523

    CAS  Article  Google Scholar 

  13. 13.

    Zu-Sheng H, Ling-Hua T, Xiao-Miao C, Fa-Yin J, San-Jiu Y and Fu-Ming X 2011 Mater. Lett.65 1079

    Article  Google Scholar 

  14. 14.

    Subbiah T, Bhat G S and Tock R W 2005 J. Appl. Polym. Sci.96 557

    CAS  Article  Google Scholar 

  15. 15.

    Beigmoradi R, Samimi A and Mohebbi-Kalhori D 2018 Polymer143 271

    CAS  Article  Google Scholar 

  16. 16.

    Oktay B, Kayaman-Apohan N and Erdem-Kuruca S 2014 Mater. Sci. Eng.64 012011

    Google Scholar 

  17. 17.

    Karuppuswamy P, Reddy Venugopal J, Navaneethan B, LuwangLaiva A and Ramakrishna S 2015 Mater. Lett.141 180

    CAS  Article  Google Scholar 

  18. 18.

    Yao Y, Wei H, Wang J, Lu H, Leng J and Hui D 2015 Composites, Part B83 264

    CAS  Article  Google Scholar 

  19. 19.

    Doustgani A, Vasheghani-Farahani E, Soleimani M and Hashemi-Najafabadi S 2012 Composites, Part B43 1830

    CAS  Article  Google Scholar 

  20. 20.

    Liu S, He Z, Xu G and Xiao X 2014 Mater. Sci. Eng. C44 201

    CAS  Article  Google Scholar 

  21. 21.

    Zhang H, Niu Q, Wang N, Nie J and Ma G 2015 Eur. Polym. J.71 440

    CAS  Article  Google Scholar 

  22. 22.

    Niu Q, Zeng L, Mu X, Nie J and Ma G 2016 J. Ind. Eng. Chem.34 337

    CAS  Article  Google Scholar 

  23. 23.

    Gupta P, Scott T R, Long T E and Wilkes G L 2004 Macromolecules37 9211

    CAS  Article  Google Scholar 

  24. 24.

    Wang H, Feng Y, An B, Zhang W, Sun M, Fang Z et al 2012 J. Mater. Sci.: Mater. Med.23 1499

    CAS  Google Scholar 

  25. 25.

    Sohrabi M R, Mirzabeygi V and Davallo M 2018 Spectrochim. Acta, Part A201 306

    CAS  Article  Google Scholar 

  26. 26.

    Mou Y, Zhou L, You X, Lu Y, Chen W and Zhao X 2017 Chemom. Intell. Lab. Syst.160 13

    CAS  Article  Google Scholar 

  27. 27.

    Kavaklioglu K 2018 J. Build. Eng.18 467

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Reza Sohrabi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Madani, F., Didekhani, R., Sohrabi, M.R. et al. Modelling experimental parameters for fabrication of nanofibres using Taguchi optimization by an electrospinning machine. Bull Mater Sci 43, 159 (2020). https://doi.org/10.1007/s12034-020-02138-y

Download citation

Keywords

  • Photo-electrospinning
  • optical polymerization
  • nanofibres
  • modelling
  • Taguchi design