Landau mean-field model with the cubic term for the \(\upalpha \)\(\upbeta \) transition in quartz

Abstract

Thermodynamic quantities are calculated as a function of temperature by using Landau mean-field model for the \(\upalpha \)\(\upbeta \) transition in quartz. By expanding the Gibbs free energy in terms of the order parameter (Q) with the cubic term (\(Q^{3}),\) the temperature dependence of the relevant thermodynamic quantities are predicted using the heat capacity (\(C_{\mathrm {P}})\), which is fitted to the experimental data from the literature for the \(\upalpha \)\(\upbeta \) transition in quartz. Our results indicate that the Landau mean-field model is adequate to describe the first-order \(\upalpha \)\(\upbeta \) transition in quartz.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Dolino G, Bachheimer J P and Zeyen C M E 1983 Solid State Commun. 45 295

    CAS  Article  Google Scholar 

  2. 2.

    Dolino G, Bachheimer J P, Berge B and Zeyen C M E 1984 J. Phys. 45 361 (Paris)

    CAS  Article  Google Scholar 

  3. 3.

    Berge B, Dolino G, Vallade M, Boissier M and Vacher R 1984 J. Phys. 45 715

    CAS  Article  Google Scholar 

  4. 4.

    Matsuura M, Yao H, Gouhara K, Hatta I and Kato N 1985 J. Phys. Soc. Jpn. 54 625

    CAS  Article  Google Scholar 

  5. 5.

    Yao H and Hatta I 1995 Thermochim. Acta 266 301

    CAS  Article  Google Scholar 

  6. 6.

    Banda E J K B, Craven R A, Parks R D, Horn P M and Blume M 1975 Solid State Commun. 17 11

    CAS  Article  Google Scholar 

  7. 7.

    Ishibashi S, Abe K, Suzuki M, Sasaki Y and Shigenari T 1996 Physica B 219&220 593

    CAS  Article  Google Scholar 

  8. 8.

    Carpenter M A, Salje E K H, Barber A G, Wruck B, Dove M T and Knight K S 1998 Am. Min. 83 2

    Article  Google Scholar 

  9. 9.

    Gregoryanz E, Hemley R J, Mao H K and Gillet P 2000 Phys. Rev. Lett. 84 3117

    CAS  Article  Google Scholar 

  10. 10.

    Ohno I, Harada K and Yoshitomi C 2006 Phys. Chem. Min. 33 1

    CAS  Article  Google Scholar 

  11. 11.

    Lider M C and Yurtseven H 2015 Int. J. Thermophys. 36 1585

    CAS  Article  Google Scholar 

  12. 12.

    Lider M C and Yurtseven H 2018 J. Mol. Struct. 1159 1

    CAS  Article  Google Scholar 

  13. 13.

    Yurtseven H and Ateş S 2019 J. Mol. Struct. 1179 421

    CAS  Article  Google Scholar 

  14. 14.

    Nikitin A, Markova G V, Balagurov A M, Vasin R N and Alekseeva O V 2007 Crystallogr. Rep. 52 428

    CAS  Article  Google Scholar 

  15. 15.

    Salje E K H, Ridgwell A, Güttler B, Wruck B, Dove M T and Dolino G 1992 J. Phys.: Condens. Matter 4 571

    CAS  Article  Google Scholar 

  16. 16.

    Gibhardt H, Eckold G and Mitlacher H 1997 Physica B 234–236 149

    Article  Google Scholar 

  17. 17.

    Bethke J and Eckold G 1992 Physica B 180–181 323

    Article  Google Scholar 

  18. 18.

    Tsuneyuki S, Aoki H, Tsukada M and Matsui Y 1990 Phys. Rev. Lett. 64 776

    CAS  Article  Google Scholar 

  19. 19.

    Tse J S and Klug D D 1991 Phys. Rev. Lett. 67 3559

    CAS  Article  Google Scholar 

  20. 20.

    Demiralp E, Cagin T and Goddard III W A 1999 Phys. Rev. Lett. 82 1708

    CAS  Article  Google Scholar 

  21. 21.

    Müser M H and Binder K 2001 Phys. Chem. Min. 28 746

    Article  Google Scholar 

  22. 22.

    Aslanian T A and Levanyuk A P 1979 Solid State Commun. 31 547

    Article  Google Scholar 

  23. 23.

    Dolino G 1990 Phase Trans. 21 59

    CAS  Article  Google Scholar 

  24. 24.

    Dolino G and Bastie P 1995 Key Eng. Mater. 101–102 285

    Article  Google Scholar 

  25. 25.

    Tucker M G, Dove M T and Keen D A 2000 J. Phys.: Condens. Matter 12 L723

    CAS  Article  Google Scholar 

  26. 26.

    Yurtseven H, Ipekoglu U and Ates S 2017 Mod. Phys. Lett. B 31 1750092

    CAS  Article  Google Scholar 

  27. 27.

    Tari O and Yurtseven H 2019 Mater. Chem. Phys. 228 118

    CAS  Article  Google Scholar 

  28. 28.

    Levanyuk A P and Sannikov D G 1976 Sov. Phys. Solid State 18 1122

    Google Scholar 

  29. 29.

    Höchli U T and Scott J F 1971 Phys. Rev. Lett. 26 1627

    Article  Google Scholar 

  30. 30.

    Tezuka Y, Shin S and Ishigame M 1991 Phys. Rev. Lett. 18 2356

    Article  Google Scholar 

  31. 31.

    Hemingway B S 1987 Am. Min. 72 273

    CAS  Google Scholar 

  32. 32.

    Kihara K 1990 Eur. J. Min. 2 63

    CAS  Article  Google Scholar 

  33. 33.

    Levanyuk A P, Minyukov S A and Vallade M 1993 J. Phys.: Condens. Matter 5 4419

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to H Yurtseven.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ateş, S., Yurtseven, H. Landau mean-field model with the cubic term for the \(\upalpha \)\(\upbeta \) transition in quartz. Bull Mater Sci 43, 156 (2020). https://doi.org/10.1007/s12034-020-02127-1

Download citation

Keywords

  • Landau model
  • \({\upalpha }\)\({\upbeta }\) transition
  • quartz