Effect of \(\hbox {WO}_{3}\) nanoparticle doping on the physical properties of PVC polymer


Poly(vinyl chloride)/tungsten oxide (\(\hbox {PVC}/\hbox {WO}_{3})\) nanocomposite films were synthesized with different ratio of \(\hbox {WO}_{3}\) content (0, 0.05, 0.1, 0.2 and 0.3 wt%). The sol–gel method was used to prepare \(\hbox {WO}_{3}\) nanoparticles (NPs). X-ray diffraction and scanning electron microscope techniques confirmed that the \(\hbox {WO}_{3}\) NPs were successfully dispersed in a PVC matrix with a single-phase structure. Characteristic absorption bands were observed in infrared spectra for pure PVC and nanocomposites. The morphology of \(\hbox {WO}_{3}\) was observed using transmission electron microscope. The optical energy band gaps (\(E_{\mathrm{opt}}\); direct and indirect) were estimated by using Tauc’s formula. It was found that the direct band gap energies decreased from 5.15 to 4.53 eV and the indirect bands decreased from 4.8 to 4.1 eV as \(\hbox {WO}_{3}\) doping increased, while the Urbach energy (\(E_{\mathrm{u}}\)) increased as \(\hbox {WO}_{3}\) content increased. It was found that the steepness parameter decreased, which confirms the formation of localized states in the band gap and increasing disorder in PVC polymer samples. The dielectric constant (\(\varepsilon '\)) of the \(\hbox {PVC}/\hbox {WO}_{3}\) nanocomposite films decreased as frequency increased. At a low frequency region, the loss factor (\(\varepsilon ''\)) has a high value and then sharply decreased as frequency increased, reaching a frequency independent region at high frequency values. The obtained data are very useful for using the investigated samples (\(\hbox {PVC}/\hbox {WO}_{3}\)) as the cores of high frequency transformers with very low dielectric loss.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


  1. 1.

    Da Silva M A, Vieira M G A, Maçumoto A C G and Beppu M M 2011 Polym. Test. 30 478

    Google Scholar 

  2. 2.

    Lavanya R, Saroja G and Vasu V 2013 Adv. Mater. Res. 678 32

    Google Scholar 

  3. 3.

    Sunny M C, Ramesh P and George K E 2004 J. Elastom. Plast. 36 19

    CAS  Google Scholar 

  4. 4.

    Hao J, Studenikin S A and Cocivera M 2001 J. Appl. Phys. 90 5064

    CAS  Google Scholar 

  5. 5.

    Ramesh A, Leen K H, Kumutha K and Arof A K 2007 Spectrochem. Acta A 66 1237

    CAS  Google Scholar 

  6. 6.

    Taha T A and Azab A A 2019 J. Mol. Struct. 1178 39

    CAS  Google Scholar 

  7. 7.

    Rao B N and Suvarna R P 2016 AIP Conf. Proc. 020076 1

    Google Scholar 

  8. 8.

    Srivastava S, Haridas M and Basu J K 2008 Bull. Mater. Sci. 31 213

    Google Scholar 

  9. 9.

    Ebnalwaled A A and Thabet A 2016 Syn. Met. 220 374

    CAS  Google Scholar 

  10. 10.

    Aziz S B, Ahmed H M, Hussein A M, Fathulla A B, Wsw R M and Hussein R T 2015 J. Mater. Sci.: Mater. Electron. 26 8022

    CAS  Google Scholar 

  11. 11.

    Saleh T, Kösemen A, San S E and El Mansy M K 2014 Optik 125 2009

    CAS  Google Scholar 

  12. 12.

    Makled M H, Sheha E, Shanap T S and El-Mansy M K 2013 J. Adv. Res. 4 531

    CAS  Google Scholar 

  13. 13.

    Sheha E, Khoder H, Shanap T S, El-Shaarawy M G and El Mansy M K 2012 Optik–Inter. J. Light Electron Opt. 123 1161

    CAS  Google Scholar 

  14. 14.

    Hoque M A, Ahmed M R, Rahman G T, Rahman M T, Islam M A, Khan M A et al 2018 Res. Phys. 10 434

    Google Scholar 

  15. 15.

    Abdul Nabi M, Yusop R M, Yousif E, Abdullah B M, Salimon J, Salih N et al 2014 Int. J. Polym. Sci. 697809 1

    Google Scholar 

  16. 16.

    Hassen A, El-Sayed S, Morsi W M and El Sayed A M 2014 J. Adv. Phys. 4 571

    Google Scholar 

  17. 17.

    Taha T A 2017 J. Mater. Sci.: Mater. Electron. 28 12108

    CAS  Google Scholar 

  18. 18.

    Vatani Z and Eisazadeh H 2014 J. Vinyl Additive Tech. 20 212

    CAS  Google Scholar 

  19. 19.

    Taha T A, Hendawy N N, El-Rabaie S, Esmat A and El-Mansy M K 2018 Polym. Bull. 2633 1

    Google Scholar 

  20. 20.

    Zheng H, Zhen J O, Michael S S, Richard B K and Mitchell A K 2011 Adv. Funct. Mater. 21 2175

    CAS  Google Scholar 

  21. 21.

    Vieira M G A, Da Silva M A, Dos Santos L O and Beppu M M 2011 Eur. Polym. J. 47 254

    CAS  Google Scholar 

  22. 22.

    Raveendran L, Gandhimathynathan S and Veerapandy V 2013 Adv. Mater. Res. 678 32

    CAS  Google Scholar 

  23. 23.

    Hemeda O M, Tawfik A, Amer M A, Kamal B M and El Refaay D E 2012 J. Magn. Mater. 324 3229

    CAS  Google Scholar 

  24. 24.

    Pandey M, Joshi G M, Mukherjee A and Thomas P 2016 Polym. Int. 65 1098

    CAS  Google Scholar 

  25. 25.

    Yakuphanoglu F, Barım G and Erol I 2007 J. Phys. B 391 136

    CAS  Google Scholar 

  26. 26.

    Pradhan D K, Choudhary R N P and Samantaray B K 2009 Mater. Chem. Phys. 115 557

    CAS  Google Scholar 

  27. 27.

    Yakuphanoglu F, Kandaz M, Yaraşır M N and Şenkal F B 2007 Physica B 393 235

    CAS  Google Scholar 

  28. 28.

    Kumar R and Yadav B C 2016 J. Inorg. Organomet. Polym. 26 1421

    CAS  Google Scholar 

  29. 29.

    Taha T A and Abouhaswa A S 2018 J. Mater. Sci.: Mater. Electron. 29 8100

    CAS  Google Scholar 

  30. 30.

    Spiridonov D M, Henaish A M A, Vokhmintsev A S and Weinstein I A 2017 AIP Conf. Proc. 1886 020021

    Google Scholar 

  31. 31.

    Urbach F 1953 Phys. Rev. 92 1324

    CAS  Google Scholar 

  32. 32.

    Raja V, Sarma A K and Rao V N 2003 Mater. Lett. 57 4678

    CAS  Google Scholar 

  33. 33.

    Göde F 2011 Physica B 406 1653

    Google Scholar 

  34. 34.

    Abeles F 1972 Optical properties of solids (London, UK: North-Holland Publishing Company)

    Google Scholar 

  35. 35.

    Wemple S H and DiDomenico M Jr 1971 Phys. Rev. B 3 1338

    Google Scholar 

  36. 36.

    Abouhaswa A S, Rammah Y S, Sayyed M I and Tekin H O 2019 Comp. Part B 172 218

    CAS  Google Scholar 

  37. 37.

    Wemple S H 1973 Phys. Rev. B 7 3767

    CAS  Google Scholar 

  38. 38.

    Wu T Y, Tsai P C, Lo S C, Li Y R, Lee K L, Yang S-Y et al 2018 Curr. Appl. Phys. 18 12

    Google Scholar 

  39. 39.

    Hemeda O M, Hamad M A and Henaish A M A 2018 Mater. Res. Exp. 5 076102

    Google Scholar 

  40. 40.

    Hemeda O M, Tawfik A, Henaish A M A and Salem B I 2018 J. Super. Novel Magn. 31 3733

    CAS  Google Scholar 

  41. 41.

    Melagiriyappa E, Jayanna H S and Chougule B K 2008 Mater. Chem. Phys. 112 68

    CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A S Abouhaswa.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Henaish, A.M.A., Abouhaswa, A.S. Effect of \(\hbox {WO}_{3}\) nanoparticle doping on the physical properties of PVC polymer. Bull Mater Sci 43, 149 (2020). https://doi.org/10.1007/s12034-020-02109-3

Download citation


  • Poly(vinyl chloride)
  • \(\hbox {PVC}/\hbox {WO}_{3}\) polymer films
  • optical energy gap
  • urbach energy
  • dielectric constant
  • Cole–Cole