Skip to main content
Log in

Glass transition and crystallization kinetics of a new chalcogenide-alkali metal \(\hbox {Se}_{80}\hbox {Te}_{8}(\hbox {NaCl})_{12}\) alloy

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

A new chalcogenide-alkali metal alloy of \(\hbox {Se}_{80}\hbox {Te}_{8}(\hbox {NaCl})_{12}\) has been prepared by a melt-quench technique. The crystallized phases due to the thermal annealing are observed by X-ray diffraction of the powdered sample. The glass transition and kinetics of crystallization in the \(\hbox {Se}_{80}\hbox {Te}_{8}(\hbox {NaCl})_{12}\) alloy are studied using the differential scanning calorimetric technique under non-isothermal conditions. The activation energy of the glass transition is evaluated by Kissinger and Mahadevan methods. The crystallization activation energy (\(E_{\mathrm{c}}\)) is calculated by isoconversion Friedman methods. The decrease of \(E_{\mathrm{c}}\) with increasing crystallization conversion is attributed to the complex mechanism of the crystallization process. Based on the shape of the characteristic kinetic function, the crystallization growth is found to be a three-dimensional growth from the bulk nuclei. The results show that the conditions of the Sestak–Berggren model are satisfied for describing the crystallization process of the studied \(\hbox {Se}_{80}\hbox {Te}_{8}(\hbox {NaCl})_{12}\) alloy. The parameters M and N involved in this model are calculated and related to the crystallization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sharm V, Thakur A, Goyal N, Saini G S S and Tripathi S K 2005 Semicond. Sci. Technol. 20 103

    Article  Google Scholar 

  2. Akiyama T, Uno M, Kituara H, Narumi K, Nishiuchi K and Yamada N 2001 Jpn. J. Appl. Phys. 40 1598

    Article  CAS  Google Scholar 

  3. Ohta T J 2001 Optoelectron. Adv. Mater. 3 609

    CAS  Google Scholar 

  4. Asobe M 1997 Opt. Fiber Technol. 3 142

    Article  Google Scholar 

  5. Granath K, Bodegard M and Stolt L 2000 Sol. Energy Mater. Sol. C 60 279

    Article  CAS  Google Scholar 

  6. Salome P M P, Alvarez H R and Sadewasser S. 2015 Sol. Energy Mater. Sol. C 143 9

    Article  CAS  Google Scholar 

  7. Avrami M 1939 J. Chem. Phys. 7 1103

    Article  CAS  Google Scholar 

  8. Avrami M 1940 J. Chem. Phys. 8 212

    Article  CAS  Google Scholar 

  9. Sestak J and Berggren G 1971 Thermochim. Acta 3 1

    Article  CAS  Google Scholar 

  10. Johnson W A and Mehl R F 1939 Trans. AIME 135 396

    Google Scholar 

  11. Malek J, Criado J M, Sestak J and Militký J 1989 Thermochim. Acta 153 429

    Article  CAS  Google Scholar 

  12. Malek J 2000 Thermochim. Acta 355 239

    Article  CAS  Google Scholar 

  13. Malek J 1995 Thermochim. Acta 267 61

    Article  CAS  Google Scholar 

  14. Abd-Elrahman M I, Khafagy Rasha M, Zaki Shiamaa A and Hafiz M M 2014 Thermochimica Acta 575 285

    Article  CAS  Google Scholar 

  15. Abd-Elrahman M I, Khafagy Rasha M, Noha Y and Hafiz M M 2014 Physica B 449 155

    Article  CAS  Google Scholar 

  16. Hruby J 1972 J. Phys. B 22 89

    CAS  Google Scholar 

  17. Saad M and Poulain M 1987 Mater. Sci. Forum 19 20

    Google Scholar 

  18. Kissinger H E 1956 J. Res. Natl. Bur. Stand. 57 217

    Article  CAS  Google Scholar 

  19. Mahadevan S, Giridhar A and Singh A K 1986 J. Non-Cryst. Solids 88 11

    Article  CAS  Google Scholar 

  20. Friedman H L 1964 J. Polym. Sci., Part C 6 183

    Article  Google Scholar 

  21. Flynn J H and Wall L A 1966 J. Res. Natl. Bur. Stand., Sect. A 70 487

    Article  CAS  Google Scholar 

  22. Fisher J C and Turnbull D 1949 J. Chem. Phys. 17 71

    Article  Google Scholar 

  23. Marinović-Cincović M, Janković B, Milićević B, Antić Ž, Whiffen R K and Dramićanin M D 2013 Powder Technol. 249 497

    Article  Google Scholar 

  24. Svoboda R and Malek J 2014 J. Therm. Anal. Calorim. 117 1073

    Article  CAS  Google Scholar 

  25. Svoboda R and Malek J 2012 J. Non-Cryst. Solids 358 276

    Article  CAS  Google Scholar 

  26. Akahira T and Sunose T 1971 J. Sci. Educ. Technol. 16 22

    Google Scholar 

  27. Pustkova P, Svadlak D, Shanelova J and Malek J 2006 J. Thermochim. Acta 445 116

    Article  CAS  Google Scholar 

  28. Wei L, Lei Y, Biao Y and Wen-Hai H 2006 J. Alloys Compd. 420 186

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M I Abd-Elrahman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd-Elrahman, M.I., Bakier, Y.M., Abu-Sehly, A.A. et al. Glass transition and crystallization kinetics of a new chalcogenide-alkali metal \(\hbox {Se}_{80}\hbox {Te}_{8}(\hbox {NaCl})_{12}\) alloy. Bull Mater Sci 42, 81 (2019). https://doi.org/10.1007/s12034-019-1762-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1762-z

Keywords

Navigation