Skip to main content
Log in

Confinement of an antiferroelectric liquid crystal in a polymer nanonetwork: thermal and dielectric behaviour

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

We report the thermal and dielectric investigations on a liquid crystal exhibiting an antiferroelectric phase and confined in a polymer network of sub-micron dimensions. Two different photo-polymerizable monomers have been employed for the purpose: one of them (HDDA) is bereft of any aromatic parts, while the other (RM82) contains aromatic as well as aliphatic units and, in fact, forms a liquid crystalline phase in its monomeric state. The polymerization, which is carried out in the presence of the liquid crystalline host, is expected to yield a nanosegregated structure for HDDA and blended structure for the RM82 case, the difference reflecting the morphologies of the networks, as evidenced by SEM images. Surprisingly, even a small concentration of the latter polymer added to the former variety has substantial influence on the morphology. The main work focusses on calorimetry and dielectric relaxation spectroscopy of the host liquid crystal confined in these nanonetworks created by the polymers, which can be considered to form virtual surfaces with a finite anchoring energy. We have investigated the in-phase and antiphase modes in the antiferroelectric phase, and the soft mode in the paraelectric phase preceding the antiferroelectric phase. The relaxation frequencies of all these modes are substantially influenced by the network, with the results showing certain surprises in cases containing both HDDA and RM82.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chandani A D L, Ouchi Y, Takezoe H, Fukuda A, Furukawa K and Kishi A 1989 Jpn. J. Appl. Phys. 28 L1261

    Article  CAS  Google Scholar 

  2. Musevic I, Blinc R and Zeks B 2000 The physics of ferroelectric and antiferroelectric liquid crystals (Singapore: World Scientific)

    Book  Google Scholar 

  3. Fukuda A, Takanishi Y, Isozaki T, Ishikawa K and Takezoe H 1994 J. Mater. Chem. 4 997

    Article  CAS  Google Scholar 

  4. Crawford G P and Zumer S (eds) 1996 Liquid crystals in complex geometries: formed by polymer and porous networks (Boca Raton: CRC Press)

    Google Scholar 

  5. Dierking I 2014 Materials 7 3568

    Article  CAS  Google Scholar 

  6. Kumar R and Raina K K 2011 AIP Conf. Proc. 1393 46

    Article  CAS  Google Scholar 

  7. Archer P, Dierking I and Osipov M A 2008 Phys. Rev. E: Stat. Nonlin. Soft Matter Phys. 78 051703

  8. Tan G, Lee Y H, Gou F, Chen H, Huang Y, Lan Y F et al 2017 J. Phys. D: Appl. Phys. 50 493001

    Article  Google Scholar 

  9. Blinc R, Musevic I, Pirs J, Skarabot M, Zeks B, Crawford G P et al 1996 Liquid crystals in complex geometries: formed by polymer and porous networks (Boca Raton: CRC Press)

    Google Scholar 

  10. Kossyrev P A, Qi J, Priezjev N V, Pelcovits R A and Crawford G P 2002 Appl. Phys. Lett. 81 2986

    Article  CAS  Google Scholar 

  11. Petit M, Hemine J, Daoudi A, Ismaili M, Buisine J M and Costa D A 2009 Phys. Rev. E: Stat. Nonlin. Soft Matter Phys79 031705

  12. Strauss J and Kitzerow H S 1996 Appl. Phys. Lett. 69 725

    Article  CAS  Google Scholar 

  13. Rudquist P, Elfström D, Lagerwall S T and Dabrowski R 2006 Ferroelectrics 344 177

    Article  CAS  Google Scholar 

  14. Furue H and Yokoyama H 2003 J. Appl. Phys. 42 6180

    Article  CAS  Google Scholar 

  15. Madhuri P L, Prasad S K and Nair G G 2014 RSC Adv. 4 3121

    Article  CAS  Google Scholar 

  16. Guymon C A, Hoggan E N, Clark N A, Rieker T P, Walba D M and Bowman C N 1997 Science 275 57

    Article  CAS  Google Scholar 

  17. Labeeb A, Gleeson H F and Hegmann T 2015 Appl. Phys. Lett. 107 232903

    Article  Google Scholar 

  18. Kremer F and Schonhals A (eds) 2003 Broadband dielectric spectroscopy (Berlin: Springer)

    Google Scholar 

  19. Mishra A, Dabrowski R and Dhar R 2018 J. Mol. Liq. 249 106

    Article  CAS  Google Scholar 

  20. Parry-Jones L A and Elston S J 2001 Phys. Rev. E: Stat. Nonlin. Soft Matter Phys63 050701

  21. Das D, Lahiri T and Majumder T P 2011 Physica B: Condens. Matter 406 1577

    Article  CAS  Google Scholar 

  22. Song J, Manna U, Fukuda A and Vij J K 2008 Appl. Phys. Lett. 93 142903

    Article  Google Scholar 

  23. Dadmun M D and Muthukumar M 1993 J. Chem. Phys. 98 4850

    Article  CAS  Google Scholar 

  24. Caggioni M, Roshi A, Barjami S, Mantegazza F, Iannacchione G S and Bellini T 2004 Phys. Rev. Lett. 93 127801

    Article  CAS  Google Scholar 

  25. Jayalakshmi V, Nair G G and Prasad S K 2007 J. Phys.: Condens. Matter 19 226213

    Google Scholar 

  26. Kumar V and Prasad S K 2012 RSC Adv. 2 8531

    Article  CAS  Google Scholar 

  27. Havriliak S and Negami S 1966 J. Polym. Sci. C 14 99

    Article  Google Scholar 

  28. Carlsson T, Žekš B, Filipič C and Levstik A 1990 Phys. Rev. A 42 877

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marlin Baral.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baral, M., Ranjitha, A.P. & Prasad, S.K. Confinement of an antiferroelectric liquid crystal in a polymer nanonetwork: thermal and dielectric behaviour. Bull Mater Sci 41, 135 (2018). https://doi.org/10.1007/s12034-018-1651-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1651-x

Keywords

Navigation