Advertisement

Investigation of metallic nanoparticles adsorbed on the QCM sensor by SEM and AFM techniques

  • Ioan Alin Bucurica
  • Ion V Popescu
  • Cristiana Radulescu
  • Gheorghe Valerica Cimpoca
  • Ioana-Daniela Dulama
  • Sofia Teodorescu
  • Ion Valentin Gurgu
  • Dorin Dacian Let
Article

Abstract

Quartz crystal microbalance (QCM) is known as a very sensitive device used for determination of mass quantity adsorbed on sensor surface. Its detection limits are in the range of ng cm\(^{-2}\). The adsorption mechanism of metallic nanoparticles on QCM sensor was investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). This study aims to highlight the importance of QCM applications in nanoparticles deposition field. The layers formed through adsorption process, induced by the oscillations of the QCM sensor, were investigated by AFM for surface topography and for particle mean size values. The morphology of layers and nanoparticles dimensions were determined by SEM. For a more complex investigation of the nanoparticles adsorption mechanism, the chemical composition of layers was achieved using SEM coupled with energy dispersive X-ray spectrometer (SEM-EDS). This preliminary research involved a new approach in characterization of metallic nanoparticles layers to achieve functional assembled monolayers.

Keywords

Metallic nanoparticles QCM AFM SEM SEM-EDS 

Notes

Acknowledgements

We would like to thank to anonymous reviewers for their remarks and advices.

References

  1. 1.
    Schrand A M, Hens S A C and Shenderova O A 2009 Crit. Rev. Solid State Mater. Sci. 34 18CrossRefGoogle Scholar
  2. 2.
    Faklaris O, Joshi V, Irinopoulou T, Tauc P, Sennour M, Girard H et al 2009 ACS Nano 3 3955CrossRefGoogle Scholar
  3. 3.
    Chow E K, Zhang X Q, Chen M, Lam R, Robinson E, Huang H et al 2011 Sci. Transl. Med. 3 73ra21Google Scholar
  4. 4.
    Merkel T J and DeSimone J M 2011 Sci. Transl. Med. 3 73ps8Google Scholar
  5. 5.
    Phan M H, Alonso J, Khurshid H, Lampen-Kelley P, Chandra S, Stojak Repa K et al 2016 Nanomaterials 6 221CrossRefGoogle Scholar
  6. 6.
    Gowda R, Madhunapantula S V, Sharma A, Kuzu O F and Robertson G P 2014 Mol. Cancer Ther. 13 2328CrossRefGoogle Scholar
  7. 7.
    Mochalin V N, Shenderova O, Ho D and Gogotsi Y 2011 Nat. Nanotechnol. 7 11CrossRefGoogle Scholar
  8. 8.
    Holt K B 2007 Philos. Trans. R Soc. A 365 2845CrossRefGoogle Scholar
  9. 9.
    Kotov N A 2010 Science 330 188CrossRefGoogle Scholar
  10. 10.
    Correia Carabineiro S A 2017 Molecules 22 857CrossRefGoogle Scholar
  11. 11.
    Zaffran M, Vandelaer J, Kristensen D, Melgaard B, Yadav P, Antwi-Agyei K O et al 2013 Vaccine 31 B73CrossRefGoogle Scholar
  12. 12.
    Chen H W, Huang C Y, Lin S Y, Fang Z S, Hsu C H, Lin J C et al 2016 Biomaterials 106 111CrossRefGoogle Scholar
  13. 13.
    Popescu R C and Grumezescu A M 2015 Curr. Top. Med. Chem. 15 1532CrossRefGoogle Scholar
  14. 14.
    Webster D M, Sundaram P and Byrne M E 2013 Eur. J. Pharm. Biopharm. 84 1CrossRefGoogle Scholar
  15. 15.
    Hartwell B L, Antunez L, Sullivan B P, Thati S, Sestak J O and Berkland C 2015 J. Pharm. Sci. 104 346CrossRefGoogle Scholar
  16. 16.
    Nelson B C, Johnson M E, Walker M L, Riley K R and Sims C M 2016 Antioxidants 5 15CrossRefGoogle Scholar
  17. 17.
    Pradeep T and Anshup 2009 Thin Solid Films 517 6441Google Scholar
  18. 18.
    He F, Zhao D and Roberts C 2009 In Nanotechnology applications for clean water (eds) N Savage, M Diallo, J Duncan, A Street and R Sustich (USA: William Andrew Publication)Google Scholar
  19. 19.
    Cao G 2004 Nanostructures and nanomaterials: synthesis, properties and applications (London: Imperial College Press)CrossRefGoogle Scholar
  20. 20.
    Feldheim D L and Foss Jr C A 2002 Metal nanoparticles: synthesis characterization and applications (New York: Marcel Dekker Inc.)Google Scholar
  21. 21.
    Hipler (Jena) U C and Jena E P 2006 Biofunctional textiles and the skin (Basel: Karger AG)Google Scholar
  22. 22.
    Kathirvelu S, D’Souza L and Dhurai B 2009 Indian J. Fibre Text. 34 267Google Scholar
  23. 23.
    Radulescu C, Hossu A M, Manea L and Tarabasanu-Mihaila C 2007 Rev. Chim. (Bucharest) 58 958Google Scholar
  24. 24.
    Radulescu C, Ionita I, Moater E I and Gheboianu A 2010 Ind. Text. 61 168Google Scholar
  25. 25.
    Chen C, Li Y, Song J, Yang Z, Kuang Y, Hitz E et al 2017 Adv. Mater. 2017 1701756Google Scholar
  26. 26.
    Mane S G, Sawant P R and Shinde N N 2015 Int. Res. J. Eng. Tech.  2 703Google Scholar
  27. 27.
    Gawande M B, Goswami A, Felpin F X, Asefa T, Huang X, Silva R et al 2016 Chem. Rev. 116 3722CrossRefGoogle Scholar
  28. 28.
    Gawande M B, Shelke S N, Zboril R and Varma R S 2014 Acc. Chem. Res. 47 1338CrossRefGoogle Scholar
  29. 29.
    Li G, Li X H and Zhang Z J 2011 Prog. Chem. 23 1644Google Scholar
  30. 30.
    Yin G, Nishikawa M, Nosaka Y, Srinivasan N, Atarashi D, Sakai E et al 2015 ACS Nano 9 2111CrossRefGoogle Scholar
  31. 31.
    Bhanushali S, Ghosh P, Ganesh A and Cheng W 2015 Small 11 1232CrossRefGoogle Scholar
  32. 32.
    Bichler O, Zhao W, Alibart F, Pleutin S, Vuillaume D and Gamrat C 2010 IEEE Trans. Electron Dev. 57 3115CrossRefGoogle Scholar
  33. 33.
    Noh J S, Lee J M and Lee W 2011 Sensors 11 825CrossRefGoogle Scholar
  34. 34.
    Hung C, Lin H, Chen H, Tsai Y, Lai P, Fu S et al 2007 Sens. Actuat. B 122 81CrossRefGoogle Scholar
  35. 35.
    Wang G H, Hilgert J, Richter F H, Wang F, Bongard H J, Spliethoff B et al 2014 Nat. Mater. 13 293CrossRefGoogle Scholar
  36. 36.
    Bauer J C, Chen X, Liu Q S, Phan T H and Schaak R E 2008 J. Mater. Chem. 18 275CrossRefGoogle Scholar
  37. 37.
    Tan C W, Tan K H, Ong Y T, Mohamed A R, Hussein S, Zein S et al 2011 In Environmental chemistry for a sustainable world (eds) E Lichrfouse, J Schwarzbauer and D Robert (Dordrecht–Heidelberg–London–New York: Springer)Google Scholar
  38. 38.
    Martirosyan A and Schneider Y J 2014 Int. J. Environ. Res. Public Health 11 5720CrossRefGoogle Scholar
  39. 39.
    Masdor N A, Altintas Z and Tothill I E 2016 Biosens. Bioelectron. 78 328CrossRefGoogle Scholar
  40. 40.
    Maciejewska-Prończuk J, Morga M, Adamczyk Z, Oćwieja M and Zimowska M 2017 Colloids Surf. A 514 226CrossRefGoogle Scholar
  41. 41.
    Kananizadeh N, Rice C, Lee J, Rodenhausen K B, Sekora D, Schubert Mathias et al 2017 J. Hazard. Mater. 322 118CrossRefGoogle Scholar
  42. 42.
    Chen Q, Xu S, Liu Q, Masliyah J and Xu Z 2016 Adv. Colloid Interface Sci. 233 94CrossRefGoogle Scholar
  43. 43.
    Bailey C M, Kamaloo E, Waterman K L, Wang K F, Nagarajan R and Camesano T A 2015 Biophys. Chem. 203–204 51CrossRefGoogle Scholar
  44. 44.
    Eggersdorfer M L and Pratsinis S E 2014 Adv. Powder Technol. 25 71CrossRefGoogle Scholar
  45. 45.
    Jiang J, Oberdörster G and Biswas P 2009 J. Nanopart. Res. 11 77CrossRefGoogle Scholar
  46. 46.
    Reimhult K, Yoshimatsu K, Risveden K, Chena S, Ye L, Krozera A 2008 Biosens. Bioelectron23 1908Google Scholar
  47. 47.
    Cimpoca G V, Radulescu C, Dulama I D, Popescu I V, Stihi C, Gheboianu A et al 2009 AIP Conf. Proc. 1203 409Google Scholar
  48. 48.
    Cimpoca G V, Radulescu C, Dulama I D, Popescu I V, Gheboianu A, Bancuta I et al 2009 AIP Conf. Proc. 1203 160Google Scholar
  49. 49.
    Cimpoca G V, Radulescu C, Popescu I V, Dulama I D, Ionita, I, Cimpoca M et al 2009 AIP Conf. Proc. 1203 415Google Scholar
  50. 50.
    Cimpoca G V, Popescu I V, Dulama I D, Radulescu C, Bancuta I, Cimpoca M et al 2009 IEEE Proc. CAS Conf. 1–2 135Google Scholar
  51. 51.
    Dulama I D, Popescu I V, Cimpoca G V, Radulescu C, Bucurica I A, Let D et al 2013 IEEE Proc. CAS Conf. 1–2 107Google Scholar
  52. 52.
    Sauerbrey G 1959 Z. Phys. 155 206CrossRefGoogle Scholar
  53. 53.
    Long C J and Cannara R J 2015 Rev. Sci. Instrum. 86 073703CrossRefGoogle Scholar
  54. 54.
    Let D, Bucurica A, Dulama I, Bacinschi Z, Mihai S and Filip V 2015 Sci. Bull. Mater. Mech.  10 71Google Scholar
  55. 55.
    Negrea A, Bacinschi Z, Bucurica I A, Teodorescu S and Stirbescu R 2016 Rom. J. Phys. 61 527Google Scholar
  56. 56.
    Radulescu C, Stihi C, Popescu I V, Varaticeanu B, Telipan G, Bumbac M et al 2016 J. Sci. Arts 1 77Google Scholar
  57. 57.
    Teodorescu S, Ion R M, Nechifor G, Bucurica I A, Dulama I D, Stirbescu R M et al 2017 Rev. Chim. (Bucharest) 68 869Google Scholar
  58. 58.
    Bintintan A, Gligor M, Dulama I D, Teodorescu S, Stirbescu R M and Radulescu C 2017 Rev. Chim. (Bucharest) 68 847Google Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Institute of Multidisciplinary Research for Science and TechnologyValahia University of TargovisteTârgovişteRomania
  2. 2.Doctoral School, Faculty of PhysicsUniversity of BucharestBucharestRomania
  3. 3.Faculty of Sciences and ArtsValahia University of TargovisteTârgovişteRomania
  4. 4.Academy of Romanian ScientistsBucharestRomania

Personalised recommendations