Influence of \(\hbox {Si}_{3}\hbox {N}_{4}\) layer on the electrical properties of Au/n-4H SiC diodes

  • Fatih Yigiterol
  • Hasan H Gullu
  • Esra D Yildiz


In this study, the effect of \(\hbox {Si}_{3}\hbox {N}_{4}\) insulator layer on the electrical characteristics of Au/n-4H SiC diode was investigated. The current–voltage (\({I{-}V}\)), capacitance–voltage (\({C{-}V}\)) and conductance–voltage (\(G/w{-}V\)) measurements were carried out at room temperature condition. Under thermionic emission model, electrical parameters as zero-bias barrier height (\(\Phi _{\mathrm{Bo}}\)), ideality factor (n), interface states (\(D_{\mathrm{it}}\)), and series (\(R_{\mathrm{s}}\)) and shunt (\(R_{\mathrm{sh}}\)) resistances were estimated from forward bias \({I{-}V}\) analyses. The values of n and \(\Phi _{\mathrm{Bo}}\) were about 1.305 and 0.796 eV for metal–semiconductor (MS) rectifying diode, and 3.142 and 0.713 eV for metal–insulator–semiconductor (MIS) diode with the insertion of \(\hbox {Si}_{3}\hbox {N}_{4}\) layer, respectively. Since the values of n were greater than the unity, the fabricated diodes showed non-ideal \({I{-}V}\) behaviour. The energy distribution profile of \(D_{\mathrm{it}}\) of the diodes was calculated by taking into account of the bias dependence of the effective barrier height (\(\Phi _{\mathrm{e}}\)) and \(R_{\mathrm{s}}\). The obtained \(D_{\mathrm{it}}\) values with \(R_{\mathrm{s}}\) are almost one order of magnitude lower than those without \(R_{\mathrm{s}}\) for two diodes. According to Cheung’s model, \(R_{\mathrm{s}}\) were calculated and these values were found in increasing behaviour with the contribution of \(\hbox {Si}_{3}\hbox {N}_{4}\) insulator layer. In addition, the \(J_{\mathrm{R}}{-}V\) plot behaviours with linear dependence between ln(\(J_{\mathrm{R}}\)) vs. \(V^{0.5}\) indicated that the dominant conduction mechanism in the reverse bias region was Schottky effect for both MS and MIS diodes. In the room temperature \({C{-}V}\) measurements, different from the results of MIS diode, the values of C for MS diode was observed in decreasing behaviour from ideality with crossing the certain forward bias voltage point (\(\sim \) \(2.5\ \hbox {V}\)). The decrease in the negative capacitance corresponds to the increase of G / w.


MS MIS insulator layer interface states \(\hbox {Si}_{3}\hbox {N}_{4}\) layer conduction mechanism 



This study was partially supported by The Management Unit of Scientific Research Project of Hitit University, under Project Numbers FEF19004.15.010 and FEF19002.15.001.


  1. 1.
    Morkoç H, Strite S, Gao G B, Lin M E, Sverdlov B and Burns M 1994 J. Appl. Phys. 76 363CrossRefGoogle Scholar
  2. 2.
    Masri P 2002 Surf. Sci. Rep. 48 1CrossRefGoogle Scholar
  3. 3.
    Sochacki M, Kolendo A, Szmidt J and Werbowy A 2005 Solid-State Electron. 49 585CrossRefGoogle Scholar
  4. 4.
    Wang S R and Liu Z L 2002 Curr. Appl. Phys. 2 393CrossRefGoogle Scholar
  5. 5.
    Bozack M J 1997 Phys. Stat. Solid B 202 549CrossRefGoogle Scholar
  6. 6.
    Porter L M, Davis R F, Bow J S, Kim M J, Carpenter R W and Glass R C 1995 J. Mater. Res. 10 668CrossRefGoogle Scholar
  7. 7.
    Yakimova R, Hemmingsson C, Macmillan M F, Yakimov T and Janzen E 1998 J. Electron. Mater. 27 871CrossRefGoogle Scholar
  8. 8.
    Schoen K J, Woodall J M, Cooper J A and Melloch M R 1998 IEEE Trans. Electron. Dev. 45 1595CrossRefGoogle Scholar
  9. 9.
    Sze S M 1981 Physics of semiconductor devices (New York: Wiley)Google Scholar
  10. 10.
    Rhoderic E H and Williams R H 1978 Metal-semiconductor contacts (Oxford: Clarendon Press)Google Scholar
  11. 11.
    Lu X, Xu X, Wang N Q, Zhang Q and Lin M C 2001 J. Phys. Chem. B 105 10069CrossRefGoogle Scholar
  12. 12.
    Onganer Y, Sağlam M, Türüt A, Efeoğlu H and Tüzemen S 1996 Solid State Electron. 39 677CrossRefGoogle Scholar
  13. 13.
    Okutan M, Başaran E N and Yakuphanoglu F 2005 Appl. Surf. Sci. 252 1966CrossRefGoogle Scholar
  14. 14.
    Pakma O, Serin N, Serin T and Altındal Ş 2009 J. Sol-Gel Technol. 50 28CrossRefGoogle Scholar
  15. 15.
    Card H C and Rhoderick E H 1971 J. Phys. D 4 1589CrossRefGoogle Scholar
  16. 16.
    Farag A M, Ashery A, Ahmed E M A and Salem M A 2010 J. Alloys Compd. 495 116CrossRefGoogle Scholar
  17. 17.
    Kavasoglu A S, Yakuphanoglu F, Kavasoglu N, Pakma O, Birgi O and Oktik S 2010 J. Alloys Compd. 492 421CrossRefGoogle Scholar
  18. 18.
    Altındal Ş, Kanbur H, Yıldız D E and Parlak M 2007 Appl. Surf. Sci. 253 5056CrossRefGoogle Scholar
  19. 19.
    Cheung S K and Cheung N W 1986 Appl. Phys. Lett. 49 85CrossRefGoogle Scholar
  20. 20.
    Farag A M, Terra F S, Mahmoud G M and Mansour A M 2009 J. Alloys Compd. 481 427CrossRefGoogle Scholar
  21. 21.
    Tataroğlu A and Altındal Ş 2009 J. Alloys Compd. 484 405CrossRefGoogle Scholar
  22. 22.
    Pirri C F, Ferrero S, Scaltrito L, Perrone D, Guastella S, Furno M et al 2006 Microelectron. Eng. 83 86CrossRefGoogle Scholar
  23. 23.
    Aydoğan Ş, Çınar K, Asıl H, Çoşkun C and Türüt A 2009 J. Alloys Compd. 476 913CrossRefGoogle Scholar
  24. 24.
    Ejderha K, Yıldırım N, Abay B and Türüt A 2009 J. Alloys Compd. 484 870CrossRefGoogle Scholar
  25. 25.
    Yıldız D E, Altındal Ş and Kanbur H 2008 J. Appl. Phys. 103 124502CrossRefGoogle Scholar
  26. 26.
    Özer M, Yıldız D E, Altındal Ş and Bülbül M 2007 Solid-State Electron. 51 941CrossRefGoogle Scholar
  27. 27.
    Tataroğlu A, Altındal Ş and Bülbül M 2005 Microelectron. Eng. 81 140CrossRefGoogle Scholar
  28. 28.
    Aydın S B K, Yıldız D E and Kanbur Çavuş H 2014 Bull. Mater. Sci. 37 1563CrossRefGoogle Scholar
  29. 29.
    Yıldız D E and Dökme İ 2011 J. Appl. Phys. 110 014507CrossRefGoogle Scholar
  30. 30.
    Benkovska J, Stuchlikova L, Buc D and Caplovic L 2012 Phys. Stat. Sol. A 209 1384CrossRefGoogle Scholar
  31. 31.
    Vila M, Prieto C, Miranzo P, Osendi M I and Ramirez R 2002 Surf. Coat. Technol. 151-152 67CrossRefGoogle Scholar
  32. 32.
    Tataroğlu A and Pür Z 2013 Phys. Scr. 88 015801CrossRefGoogle Scholar
  33. 33.
    Tataroğlu A 2013 Chin. Phys. B 22 068402CrossRefGoogle Scholar
  34. 34.
    Card H C and Rhoderick H C 1973 Solid-State Electron. 16 365CrossRefGoogle Scholar
  35. 35.
    Hudait M K and Krupanidhi S B 2001 Mater. Sci. Eng. B Solid 87 141CrossRefGoogle Scholar
  36. 36.
    Wener J H and Güttler H 1991 J. Appl. Phys. 69 1522CrossRefGoogle Scholar
  37. 37.
    Schroder D K 1998 Semiconductor material and device characterization (London: Wiley)Google Scholar
  38. 38.
    Wagle S and Shirodkar V 2000 J. Phys. 30 380Google Scholar
  39. 39.
    Zang Z X, Pan X J, Wang T, Xie E Q and Jia L 2009 J. Alloys Compd. 467 61CrossRefGoogle Scholar
  40. 40.
    Bengi A, Aydemir U, Altındal Ş, Özen Y and Özçelik S 2010 J. Alloys Compd. 505 628CrossRefGoogle Scholar
  41. 41.
    Wang H, Shen X N, Su X J, Wang Z, Shang S X and Wang M 1997 Ferroelectrics 195 233CrossRefGoogle Scholar
  42. 42.
    Güllü Ö, Aydoğan S and Türüt A 2008 Microelectron. Eng. 85 1647CrossRefGoogle Scholar
  43. 43.
    Zhang S X, Kundaliya D C, Yu W, Dhar S, Young S Y, Salamanca-Riba L G et al 2007 J. Appl. Phys. 102 013701CrossRefGoogle Scholar
  44. 44.
    Güllü H H, Bayrakli Ö, Yildiz D E and Parlak M 2017 J. Mater. Sci. Mater. Electron 28 17806CrossRefGoogle Scholar
  45. 45.
    Hudait M K and Krupanidhi S B 2001 Mater. Sci. Eng. B 87 141CrossRefGoogle Scholar
  46. 46.
    Ma T P 1989 Semicond. Sci. Technol. 4 1061CrossRefGoogle Scholar
  47. 47.
    Hughes G W 1997 J. Appl. Phys. 48 5357CrossRefGoogle Scholar
  48. 48.
    Akkal B, Benemara Z, Boudissa A, Bouiadjra N B, Amrani M, Bideux L et al 1998 Mater. Sci. Eng. B 55 162CrossRefGoogle Scholar
  49. 49.
    Çetinkara H A, Türüt A, Zengin D M and Erel Ş 2003 Appl. Surf. Sci. 207 190CrossRefGoogle Scholar
  50. 50.
    Soylu M, Al-Hartomy O A, Al Said S A F, Al-Ghamdi A, Yahia I S and Yakuphanoğlu F 2013 Microelectron. Reliab. 53 1901CrossRefGoogle Scholar
  51. 51.
    Arslan E, Bütün S and Ozbay E 2009 Appl. Phys. Lett. 94 142106CrossRefGoogle Scholar
  52. 52.
    Soylu M, Yahia I S, Yakuphanoglu F and Farooq W A 2011 J. Appl. Phys. 110 074514CrossRefGoogle Scholar
  53. 53.
    Gould R D 1996 Coord. Chem. Rew. 156 237CrossRefGoogle Scholar
  54. 54.
    Reis F T, Mencaraglia D, Saad S O, Seguy I, Oukachmih M, Jolinat P et al 2003 Synth. Met. 138 33CrossRefGoogle Scholar
  55. 55.
    Harrell W R and Gopalakrishnan C 2002 Thin Solid Films 405 205CrossRefGoogle Scholar
  56. 56.
    Frenkel J 1938 Tech. Phys. USSR 6 685Google Scholar
  57. 57.
    Frenkel J 1938 Phys. Rev. 54 647CrossRefGoogle Scholar
  58. 58.
    Harrell W R and Frey J 1999 Thin Solid Films 352 195CrossRefGoogle Scholar
  59. 59.
    Arslan E, Şafak Y, Altındal Ş, Kelekçi Ö and Özbay E 2010 J. Non-Cryst. Solids 356 1006CrossRefGoogle Scholar
  60. 60.
    Uslu H, Altındal Ş, Polat I, Bayrak H and Bacaksız E 2011 J. Alloys Compd. 509 5555CrossRefGoogle Scholar
  61. 61.
    Jones B K, Santana J and McPherson M 1998 Solid State Commun. 107 47CrossRefGoogle Scholar
  62. 62.
    Ershov M, Liu H C, Li L, Buchanan M, Wasilewsk Z R and Jonscher A K 1998 IEEE Trans. Electron. Dev. 45 2196CrossRefGoogle Scholar
  63. 63.
    Wu X, Yang E S and Evans H L 1990 J. Appl. Phys. 68 1104CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Fatih Yigiterol
    • 1
  • Hasan H Gullu
    • 2
    • 3
    • 4
  • Esra D Yildiz
    • 1
  1. 1.Department of PhysicsHitit UniversityÇorumTurkey
  2. 2.Central LaboratoryMiddle East Technical UniversityAnkaraTurkey
  3. 3.Center for Solar Energy Research and Applications (GÜNAM)Middle East Technical UniversityAnkaraTurkey
  4. 4.Department of Electrical and Electronics EngineeringAtilim UniversityAnkaraTurkey

Personalised recommendations