Chemical synthesis of highly size-confined triethylamine-capped \(\hbox {TiO}_{2}\) nanoparticles and its dye-sensitized solar cell performance

  • T Prakash
  • M Navaneethan
  • J Archana
  • S Ponnusamy
  • C Muthamizhchelvan
  • Y Hayakawa


\(\hbox {TiO}_{2}\) nanoparticles were synthesized by a facile wet chemical synthesis using triethylamine (TEA) as a surface passivating agent. The role of  TEA on the formation and functional properties of \(\hbox {TiO}_{2}\) nanoparticles were investigated. Particle agglomeration was restricted and nanoparticle size was limited to 5 nm by passivating the amine molecule. Photoanodes were fabricated by spray deposition method using synthesized \(\hbox {TiO}_{2}\) nanoparticles. The efficiency of 5.91% was obtained by the dye-sensitized solar cells.


Nanostructures semiconductors chemical synthesis electron microscopy 


  1. 1.
    Zeman P and Takabayashi S 2002 J. Vac. Sci. A 20 388CrossRefGoogle Scholar
  2. 2.
    Deb S K 2005 Sol. Energy Mater. Sol. Cells 88 1CrossRefGoogle Scholar
  3. 3.
    Jiu J, Isoda S, Wang F and Adachi M 2006 J. Phys. Chem. B 110 2087CrossRefGoogle Scholar
  4. 4.
    Park J H, Lee T W and Kang M G 2008 Chem. Commun. 7 2867Google Scholar
  5. 5.
    Kang S H, Choi S H, Kang M S, Kim J Y, Kim H S, Hyeon T et al 2008 Adv. Mater. 20 54CrossRefGoogle Scholar
  6. 6.
    Wang X, Zhaung J, Peng Q and Li Y D 2005 Nature 437 121CrossRefGoogle Scholar
  7. 7.
    Wu M, Lin G, Chen D, Wang G, He D, Feng S et al 2002 Chem. Mater. 14 1974Google Scholar
  8. 8.
    Yanagisawa K and Ovenstone J 1999 J. Phys. Chem. B 103 7781CrossRefGoogle Scholar
  9. 9.
    Coronado R D, Gattorno R G, Pesqueira E M E, Cab C, Coss R and Oskam G 2008 Nanotechnology 19 145605CrossRefGoogle Scholar
  10. 10.
    Wang Y, Zhang S and Wu X 2004 Nanotechnology 15 1162CrossRefGoogle Scholar
  11. 11.
    Kim E Y, Choi H and Wang C M 2010 J. Mater. Sci. 45 3895CrossRefGoogle Scholar
  12. 12.
    Wu X, Wang D and Yang S 2000 J. Colloid Interf. Sci. 222 37CrossRefGoogle Scholar
  13. 13.
    Misra T K and Liu C Y 2007 J. Colloid Interf. Sci. 310 178CrossRefGoogle Scholar
  14. 14.
    Navaneethan M, Archana J, Arivanandhan M and Hayakawa Y 2012 Chem. Eng. J. 213 70CrossRefGoogle Scholar
  15. 15.
    Nisha K D, Navaneethan M, Ponnusamy S and Muthamizhchelvan C 2009 J. Alloys Compd. 486 844CrossRefGoogle Scholar
  16. 16.
    Navaneethan M, Nisha K D, Ponnusamy S and Muthamizhchelvan C 2009 Mater. Chem. Phys. 117 443CrossRefGoogle Scholar
  17. 17.
    Peng F, Cai L, Yu H, Wang H and Yang J 2008 J. Solid State Chem. 181 130CrossRefGoogle Scholar
  18. 18.
    Kosowska B, Mozia S, Morawski A W, Grzmil B, Janus M and Kalucki K 2005 Sol. Energy Mater. Sol. Cells 88 269CrossRefGoogle Scholar
  19. 19.
    Li H, Li J and Huo Y 2006 J. Phys. Chem. B 110 1559CrossRefGoogle Scholar
  20. 20.
    Swamy V, Kuznetsov A, Dubrovinsky L S, Caruso R A, Shchukin D G and Muddle B C 2005 Phys. Rev. B  71 184302CrossRefGoogle Scholar
  21. 21.
    Lottici P P, Bersani D, Braghini M and Montenero A 1993 J. Mater. Sci. 28 177CrossRefGoogle Scholar
  22. 22.
    Balachandran U and Eror N G 1982 J. Solid State Chem. 42 276CrossRefGoogle Scholar
  23. 23.
    Kim E Y, Choi H and Wang C M 2010 J. Mater. Sci. 45 3895CrossRefGoogle Scholar
  24. 24.
    Zhang R and Gao L 2002 Key Eng. Mater. 224 573CrossRefGoogle Scholar
  25. 25.
    Wang Z, Kawauchi H, Kashima T and Arakawa H 2004 Coord. Chem. Rev. 248 1381CrossRefGoogle Scholar
  26. 26.
    Chen X and Mao S S 2007 Chem. Rev. 107 2891CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of S & HQIS Institute of TechnologyOngole, PrakasamIndia
  2. 2.Research Institute of ElectronicsShizuoka UniversityHamamatsuJapan
  3. 3.SRM Research Institute, Department of Physics & NanotechnologySRM UniversityKancheepuramIndia
  4. 4.Department of Physics & NanotechnologySRM UniversityKancheepuramIndia

Personalised recommendations