Properties of ternary NiFeW alloy coating by jet electrodeposition

  • J K Yu
  • J Zhao
  • M Q Yu
  • H L Luo
  • Q Qiao
  • S Zhai
  • Z F Xu
  • Kazuhiro Matsugi


In this paper, ternary NiFeW alloy coatings were prepared by jet electrodeposition, and the effects of lord salt concentration, jet speed, current density and temperature on the properties of the coatings, including the composition, microhardness, surface morphology, structure and corrosion resistance, were investigated. Results reveal that the deposition rate reaches a maximum value of 27.30 \(\upmu \hbox {m}\hbox { h}^{-1}\), and the total current efficiency is above 85%. The maximum microhardness is 605 HV, and the wear and corrosion resistance values of the alloy coating are good. Moreover, the ternary NiFeW alloy coating is smooth and bright, and it presents a dense cellular growth. The alloy plating is nanocrystalline and has face-centered cubic structure.


Jet electrodeposition NiFeW alloy coating current efficiency microstructure microhardness 



We acknowledge the financial support from the Higher School of Science and Technology of Hebei Province in China (grant no. ZD2014055). This research work was also supported by the China Scholarship Council.


  1. 1.
    Sriraman K R, Raman S G S and Seshadri S K 2007 Mater. Sci. Eng. A 460–461 39CrossRefGoogle Scholar
  2. 2.
    Zelenovic L R, Cirovic N, Spasojevic M, Mitrovic N, Maricic A and Pavlovic V 2012 Mater. Chem. Phys. 135 212CrossRefGoogle Scholar
  3. 3.
    Oliveira A L M, Costa J D, Sousa M B D, Alves J J N, Campos A R N, Santana R A C et al 2015 J. Alloys Compd. 619 697CrossRefGoogle Scholar
  4. 4.
    Donten M, Cesiulis H and Stojek Z 2000 Electrochim. Acta 45 3389CrossRefGoogle Scholar
  5. 5.
    Islam S H 2011 Rare Met. 30 392CrossRefGoogle Scholar
  6. 6.
    He F J, Yang J, Lei T X and Gu C Y 2007 Appl. Surf. Sci. 253 7591CrossRefGoogle Scholar
  7. 7.
    Chang L M, Wang Z T, Shi S Y and W Liu 2011 J. Alloys Compd. 509 1501CrossRefGoogle Scholar
  8. 8.
    Wang S, Zeng C, Ling Y H, Wang J J and Xu G Y 2016 Surf. Coat. Technol. 286 36CrossRefGoogle Scholar
  9. 9.
    Ji X L, Yan C Y, Duan H and Luo C Y 2016 Surf. Coat. Technol. 302 208CrossRefGoogle Scholar
  10. 10.
    Kumar U P, Kennady C J and Zhou Q Y 2015 Surf. Coat. Technol. 283 148CrossRefGoogle Scholar
  11. 11.
    Moussa S O, Ibrahim M A M and Rehim S S A E 2006 J. Appl. Electrochem. 36 333CrossRefGoogle Scholar
  12. 12.
    Zhong Z M and Clouser S J 2014 Surf. Coat. Technol. 240 380CrossRefGoogle Scholar
  13. 13.
    Sriraman K R, Raman S G S and Seshadri S K 2006 Mater. Sci. Technol. 22 14CrossRefGoogle Scholar
  14. 14.
    He J, He F L, Li D W, Liu Y L and Yin D C 2016 Colloids Surf. B 142 325CrossRefGoogle Scholar
  15. 15.
    Nagayama T, Yamamoto T and Nakamura T 2016 Electrochim. Acta 205 178CrossRefGoogle Scholar
  16. 16.
    Matsui I, Mori H, Kawakatsu T, Takigawa Y, Uesugi T and Higashi K 2014 Mater. Sci. Eng. A 607 505CrossRefGoogle Scholar
  17. 17.
    Yari S and Dehghanian C 2013 Ceram. Int. 39 7759CrossRefGoogle Scholar
  18. 18.
    Elias L and Hegde A C 2015 Surf. Coat. Technol. 283 61CrossRefGoogle Scholar
  19. 19.
    Zemanová M, Krivosudská M, Chovancová M and Jorík V 2011 J. Appl. Electrochem. 41 1077CrossRefGoogle Scholar
  20. 20.
    Kiran U R, Kumar J, Kumar V, Sankaranarayana M, Nageswara Rao G V S and Nandy T K 2016 Mater. Sci. Eng. A 656 256CrossRefGoogle Scholar
  21. 21.
    Hou K H and Chen Y C 2011 Appl. Surf. Sci. 257 6340CrossRefGoogle Scholar
  22. 22.
    Spasojević M, Zelenović L R, Maričić A and Spasojević P 2014 Powder Technol. 254 439CrossRefGoogle Scholar
  23. 23.
    Zhan H Q, He F J, Ju H and Zhao R S 2008 J. Mater. Prot. 41 31CrossRefGoogle Scholar
  24. 24.
    Liu Y H and Yuan J M 1998 J. Mater. Prot. 31 19Google Scholar
  25. 25.
    Gu Z C and He L F 2010 Plat. Finish. 32 1Google Scholar
  26. 26.
    Meng Q P, Rong Y H and Xu Z Y 2002 Sci. Chin. (Series E) 32 457Google Scholar
  27. 27.
    Li H, He Y, He T, Qing D Y, Luo F J, Fan Y et al 2017 J. Alloys Compd. 704 32CrossRefGoogle Scholar
  28. 28.
    Dong N, Zhang C L, Li J and Han P D 2016 Rare Met. Mater. Eng. 45 0885CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • J K Yu
    • 1
  • J Zhao
    • 1
  • M Q Yu
    • 2
  • H L Luo
    • 2
    • 3
  • Q Qiao
    • 1
  • S Zhai
    • 1
  • Z F Xu
    • 2
  • Kazuhiro Matsugi
    • 2
  1. 1.State Key Laboratory of Metastable Materials Science and TechnologyYanshan UniversityQinhuangdaoPeople’s Republic of China
  2. 2.Graduate School of EngineeringHiroshima UniversityHigashi-HiroshimaJapan
  3. 3.Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and ControlYanshan UniversityQinhuangdaoPeople’s Republic of China

Personalised recommendations