Tuning the BODIPY core for its potential use in DSSC: a quantum chemical approach

  • Narendra Nath Ghosh
  • Md Habib
  • Anup Pramanik
  • Pranab Sarkar
  • Sougata Pal


Boron dipyrromethene (BODIPY) is a highly promising candidate for use in dye-sensitized solar cell (DSSC), because of its attractive absorption characteristics such as strong extinction coefficients in the visible and near-IR ranges (70000–80000 \(\hbox {M}^{-1}\) \(\hbox {cm}^{-1})\), large quantum yields, longer excited-state lifetime and also high solubility in many organic solvents. Moreover, the absorption peaks can be shifted towards longer wavelengths when functionalized at suitable positions of the BODIPY core. Herein, on the basis of density functional theory (DFT) and time-dependent DFT, we provide the opto-electronic properties of BODIPY core-functionalized dyes to see their applicability in organic DSSC. Our systematic analyses reveal that the 2,6 substituted dyes show better photovoltaic properties compared to the 3,5 substituted ones. On the basis of empirical relationship, we have also calculated the photo-induced electron injection times of some dye-\(\hbox {TiO}_{2}\) composites, which seem to be in the ultrafast time scale, thus rendering them a promising candidate for DSSC applications. Our theoretical studies provide that judiciously designed BODIPY core-derived dyes show certain unique spectroscopic and electronic features that make them highly advantageous in DSSC applications as compared to other organic dyes.


BODIPY DFT study DSSC application 



We sincerely acknowledge UGC, New Delhi, Govt. of India, for partial financial support. The financial support from SERB-DST, New Delhi, through the Project Ref. No. CS-085/2014 is gratefully acknowledged.

Supplementary material

12034_2018_1573_MOESM1_ESM.doc (91 kb)
Supplementary material 1 (doc 91 KB)


  1. 1.
    O’regan B and Grfitzeli M 1991 Nature  353 737Google Scholar
  2. 2.
    Nazeeruddin M K, Pechy P, Renouard T, Zakeeruddin S M, Humphry-Baker R, Comte P et al 2001 J. Am. Chem. Soc.  123 1613CrossRefGoogle Scholar
  3. 3.
    Nazeeruddin M K, De Angelis F, Fantacci S, Selloni A, Viscardi G, Liska P et al 2005 J. Am. Chem. Soc.  127 16835CrossRefGoogle Scholar
  4. 4.
    Mishra A, Fischer M K and Bäuerle P 2009 Angew. Chem. Int. Ed.  48 2474CrossRefGoogle Scholar
  5. 5.
    Wu Y and Zhu W 2013 Chem. Soc. Rev.  42 2039CrossRefGoogle Scholar
  6. 6.
    Pramanik A, Sarkar S, Pal S and Sarkar P 2015 Phys. Lett. A  379 1036CrossRefGoogle Scholar
  7. 7.
    Wang B, Wang Y, Hua J, Jiang Y, Huang J, Qian S et al 2011 Chem. Euro. J.  17 2647CrossRefGoogle Scholar
  8. 8.
    Qian G, Dai B, Luo M, Yu D, Zhan J, Zhang Z et al 2008 Chem. Mater.  20 6208CrossRefGoogle Scholar
  9. 9.
    Biswas S, Pramanik A, Ahmed T, Sahoo S K and Sarkar P 2016 Chem. Phys. Lett.  649 23CrossRefGoogle Scholar
  10. 10.
    Biswas S, Pramanik A and Sarkar P 2017 Comput. Theor. Chem.  1103 38CrossRefGoogle Scholar
  11. 11.
    Koumura N, Wang Z-S, Mori S, Miyashita M, Suzuki E and Hara K 2006 J. Am. Chem. Soc.  128 14256CrossRefGoogle Scholar
  12. 12.
    Zhang X-H, Wang Z-S, Cui Y, Koumura N, Furube A and Hara K 2009 J. Phys. Chem. C  113 13409CrossRefGoogle Scholar
  13. 13.
    Kim S, Kim D, Choi H, Kang M S, Song K, Kang S O et al 2008 Chem. Commun. (Camb.)  40 4951CrossRefGoogle Scholar
  14. 14.
    Qin H, Wenger S, Xu M, Gao F, Jing X, Wang P et al 2008 J. Am. Chem. Soc.  130 9202CrossRefGoogle Scholar
  15. 15.
    Horiuchi T, Miura H, Sumioka K and Uchida S 2004 J. Am. Chem. Soc.  126 12218CrossRefGoogle Scholar
  16. 16.
    Horiuchi T, Miura H and, Uchida S 2003 Chem. Commun.  24 3036CrossRefGoogle Scholar
  17. 17.
    Tian H, Yang X, Chen R, Pan Y, Li L, Hagfeldt A et al 2007 Chem. Commun.  36 3741CrossRefGoogle Scholar
  18. 18.
    Yang C-J, Chang Y J, Watanabe M, Hon Y-S and Chow T J 2012 J. Mater. Chem.  22 4040CrossRefGoogle Scholar
  19. 19.
    Yen Y-S, Hsu Y-C, Lin J T, Chang C-W, Hsu C-P and Yin D-J 2008 J. Phys. Chem. C  112 12557CrossRefGoogle Scholar
  20. 20.
    Wong B M and Cordaro J G 2011 J. Phys. Chem. C  11518333CrossRefGoogle Scholar
  21. 21.
    Erten-Ela S, Yilmaz M D, Icli B, Dede Y, Icli S and Akkaya E U 2008 Org. Lett.  10 3299CrossRefGoogle Scholar
  22. 22.
    Kolemen S, Cakmak Y, Erten-Ela S, Altay Y, Brendel J, Thelakkat M et al 2010 Org. Lett.  12 3812CrossRefGoogle Scholar
  23. 23.
    Loudet A and Burgess K 2007 Chem. Rev.  107 4891CrossRefGoogle Scholar
  24. 24.
    Ulrich G, Ziessel R and Harriman A 2008 Angew. Chem. Int. Ed.  47 1184CrossRefGoogle Scholar
  25. 25.
    Boens N, Leen V and Dehaen W 2012 Chem. Soc. Rev.  41 1130CrossRefGoogle Scholar
  26. 26.
    Baruah M, Qin W, Vallée R A, Beljonne D, Rohand T, Dehaen W et al 2005 Org. Lett.  7 4377CrossRefGoogle Scholar
  27. 27.
    Jiao C, Huang K-W and Wu J 2011 Org. Lett.  13 632CrossRefGoogle Scholar
  28. 28.
    Rohand T, Baruah M, Qin W, Boens N and Dehaen W 2006 Chem. Commun.  3 266CrossRefGoogle Scholar
  29. 29.
    Misra R 2017 J. Phys. Chem. C  121 5731CrossRefGoogle Scholar
  30. 30.
    Bañuelos J 2016 Chem. Record.  16 335CrossRefGoogle Scholar
  31. 31.
    Zhu S, Zhang J, Vegesna G, Luo F-T, Green S A and Liu H 2010 Org. Lett.  13 438CrossRefGoogle Scholar
  32. 32.
    Hattori S, Ohkubo K, Urano Y, Sunahara H, Nagano T, Wada Y et al 2005 J. Phys. Chem. B  109 15368CrossRefGoogle Scholar
  33. 33.
    Kolemen S, Bozdemir O A, Cakmak Y, Barin G, Erten-Ela S, Marszalek M et al 2011 Chem. Sci.  2 949CrossRefGoogle Scholar
  34. 34.
    Ning Z, Zhang Q, Wu W, Pei H, Liu B and Tian H 2008 J. Org. Chem.  73 3791CrossRefGoogle Scholar
  35. 35.
    Ditchfield R, Hehre W J and Pople J A 1971 J. Chem. Phys.  54 724CrossRefGoogle Scholar
  36. 36.
    Becke A D 1993 J. Chem. Phys.  98 5648CrossRefGoogle Scholar
  37. 37.
    Ni Y, Zeng L, Kang N Y, Huang K W, Wang L, Zeng Z et al 2014 Chem. Euro. J.  20 2301CrossRefGoogle Scholar
  38. 38.
    Tomasi J, Mennucci B and Cammi R 2005 Chem. Rev.  105 2999CrossRefGoogle Scholar
  39. 39.
    Zarate X, Schott-Verdugo S, Rodriguez-Serrano A and Schott E 2016 J. Phys. Chem. A  120 1613CrossRefGoogle Scholar
  40. 40.
    Sánchez-de-Armas R O, Oviedo López J, San-Miguel M A, Sanz J F, Ordejón P and Pruneda M 2010 J. Chem. Theor. Comput.  6 2856CrossRefGoogle Scholar
  41. 41.
    Andreev A S, Kuznetsov V N A and Chizhov Y V 2012 J. Phys. Chem. C  116 18139CrossRefGoogle Scholar
  42. 42.
    Frisch M, Trucks G, Schlegel H B, Scuseria G, Robb M, Cheeseman J et al 2009 Wallingford, CT 19 227Google Scholar
  43. 43.
    Ghosh N N, Chakraborty A, Pal S, Pramanik A and Sarkar P 2014 Phys. Chem. Chem. Phys.  16 25280CrossRefGoogle Scholar
  44. 44.
    Barone V and Cossi M 1998 J. Phys. Chem. A  102 1995CrossRefGoogle Scholar
  45. 45.
    Tan Y Y, Tu W H and Manzhos S 2014 Chem. Phys. Lett.  593 14CrossRefGoogle Scholar
  46. 46.
    Feng J, Jiao Y, Ma W, Nazeeruddin M K, Grätzel M and Meng S 2013 J. Phys. Chem. C  117 3772CrossRefGoogle Scholar
  47. 47.
    Lu T and Chen F 2012 J. Comput. Chem.  33 580CrossRefGoogle Scholar
  48. 48.
    Li H-B, Zhang J, Wu Y, Jin J-L, Duan Y-A, Su Z-M et al 2014 Dyes Pigments  108 106CrossRefGoogle Scholar
  49. 49.
    Biswas S, Pramanik A, Pal S and Sarkar P 2017 J. Phys. Chem. C  121 2574CrossRefGoogle Scholar
  50. 50.
    Pratik S M and Datta A 2013 Phys. Chem. Chem. Phys.  15 18471CrossRefGoogle Scholar
  51. 51.
    Wei T, Sun X, Li X, Ågren H and Xie Y 2015 ACS Appl. Mater. Interf. 7 21956CrossRefGoogle Scholar
  52. 52.
    Yang Z, Liu C, Shao C, Lin C and Liu Y 2015 J. Phys. Chem. C  119 21852CrossRefGoogle Scholar
  53. 53.
    Li M, Kou L, Diao L, Zhang Q, Li Z, Wu Q et al 2015 J. Phys. Chem. C  119 9782CrossRefGoogle Scholar
  54. 54.
    Qu Z-W and Kroes G-J 2007 J. Phys. Chem. C  111 16808CrossRefGoogle Scholar
  55. 55.
    Tarsang R, Promarak V, Sudyoadsuk T, Namuangruk S, Kungwan N, Khongpracha P et al 2015 RSC Adv.  5 38130CrossRefGoogle Scholar
  56. 56.
    Monti A, Negre C F, Batista V S, Rego L G, de Groot H J and Buda F 2015 J. Phys. Chem. Lett.  6 2393CrossRefGoogle Scholar
  57. 57.
    Ding W-L, Li Q-S and Li Z-S 2015 J. Mater. Chem. A  3 19948CrossRefGoogle Scholar
  58. 58.
    Gupta K S, Zhang J, Marotta G, Reddy M A, Singh S P, Islam A et al 2015 Dyes Pigments  113 536CrossRefGoogle Scholar
  59. 59.
    Ronca E, Marotta G, Pastore M and De Angelis F 2014 J. Phys. Chem. C  118 16927CrossRefGoogle Scholar
  60. 60.
    Wei H, Luo J-W, Li S-S and Wang L-W 2016 J. Am. Chem. Soc. 138 8165Google Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Narendra Nath Ghosh
    • 1
  • Md Habib
    • 1
  • Anup Pramanik
    • 2
  • Pranab Sarkar
    • 2
  • Sougata Pal
    • 1
  1. 1.Department of ChemistryUniversity of Gour BangaMaldaIndia
  2. 2.Department of ChemistryVisva-Bharati UniversitySantiniketanIndia

Personalised recommendations