Advertisement

Milling effect on the photo-activated properties of \(\hbox {TiO}_{2}\) nanoparticles: electronic and structural investigations

  • Youcef Messai
  • Bertrand Vileno
  • David Martel
  • Philippe Turek
  • Djamel Eddine Mekki
Article

Abstract

Commercial PC105 titanium dioxide nanoparticles were studied under mechanical milling process. The effect of milling time and speed on the structural and electronic properties of \(\hbox {TiO}_{2}\) powder was then investigated using X-ray powder diffraction (XRD), dynamic light scattering (DLS), transmission electronic microscopy (TEM), electron paramagnetic resonance (EPR) and UV–visible spectroscopy. The related photo-catalytic properties of the milled nanoparticles were probed following the degradation rate of methylene orange (MO) under UV-light irradiation and through EPR spin-scavenging approach. Comparison with pristine powder shows that milled nanoparticles are significantly less reactive upon illumination, despite decreased radius and hence, higher specific area. Such low yield of reactive species is attributed to the apparition of the amorphous \(\hbox {TiO}_{2}\) and brookite phase upon milling, as well as increased charge carrier recombination as pointed out by the presence of sacrificial electron donor.

Keywords

Titania nanoparticles ball milling photo-catalytic properties photo-generated radicals electronic paramagnetic resonance spectroscopy 

Notes

Acknowledgements

This study was supported by the CNRS (Centre National de la Recherche Scientifique) and Université de Strasbourg. We gratefully acknowledge Dr Marc Schmutz for his kind help in the TEM experiments. The authors thank the French Ministry of Research and the REseauNAtional de RpeinterDisciplinaire (RENARD, Fédération IR-RPE CNRS #3443).

Supplementary material

12034_2018_1572_MOESM1_ESM.docx (425 kb)
Supplementary Materials: Supplementary material pertaining to this article is available on the Bulletin of Materials Science website (www.ias.ac.in/matersci). (docx 426KB)

References

  1. 1.
    Mozafari M R 2007 Nanomaterials and nanosystems for biomedical applications (Dordrecht, the Netherlands: Springer)Google Scholar
  2. 2.
    Zhang L, Gu F, Chan J, Wang A, Langer R and Farokhzad O 2008 Clin. Pharmacol. 83 761Google Scholar
  3. 3.
    Mu L and Sprando R L 2010 Pharm. Res. 27 1746CrossRefGoogle Scholar
  4. 4.
    Lee S, Cho I S, Lee J H, Kim D H, Kim D W, Kim J Y et al 2010 Chem. Mater. 22 1958CrossRefGoogle Scholar
  5. 5.
    Zhong P and Que W X 2010 Nano-Micro Lett. 2 1CrossRefGoogle Scholar
  6. 6.
    Jiang J, Oberdörster G and Biswas P 2009 J. Nanoparticle Res. 11 77CrossRefGoogle Scholar
  7. 7.
    Yadav V 2013 AEEE 3 771Google Scholar
  8. 8.
    Pera-Titus M, García-Molina V, Baños M A, Giménez J and Esplugas S 2004 Appl. Catal. B Environ. 47 219CrossRefGoogle Scholar
  9. 9.
    Singh R P, Singh P K and Singh R L 2014 Toxicol. Int. 21 160CrossRefGoogle Scholar
  10. 10.
    Mazurkova N A, Spitsyna Y E, Shikina N V, Ismagilov Z R, Zagrebel’nyi S N and Ryabchikova E I 2010 Nanotechnol. Russ. 5 417CrossRefGoogle Scholar
  11. 11.
    Franciscon E, Grossman M J, Paschoal J A R, Reyes F G R and Durrant L R 2012 SpringerPlus 1 37CrossRefGoogle Scholar
  12. 12.
    Malato S, Fernández-Ibáñez P, Maldonado M I, Blanco J and Gernjak W 2009 Catal. Today 147 1CrossRefGoogle Scholar
  13. 13.
    Tunç S, Gürkan T and Duman O 2012 Chem. Eng. J. 181 431CrossRefGoogle Scholar
  14. 14.
    Du J, Lai X, Yang N, Zhai J, Kisailus D, Su F et al 2011 ACS Nano 5 590CrossRefGoogle Scholar
  15. 15.
    Mo S D and Ching W Y 1995 Phys. Rev. B 51 13023CrossRefGoogle Scholar
  16. 16.
    Djerdj I and Tonejc A M 2006 J. Alloys Compd. 413 159CrossRefGoogle Scholar
  17. 17.
    Zhang J, Zhou P, Liu J and Yu J 2014 Phys. Chem. Chem. Phys. 16 20382CrossRefGoogle Scholar
  18. 18.
    Kesselman J M, Shreve G A, Hoffmann M R and Lewis N S 1994 J. Phys. Chem. 98 13385CrossRefGoogle Scholar
  19. 19.
    Xu M, Gao Y, Moreno E M, Kunst M, Muhler M, Wang Y et al 2011 Phys. Rev. Lett. 106 138302CrossRefGoogle Scholar
  20. 20.
    Ozawa K, Emori M, Yamamoto S, Yukawa R, Yamamoto S, Hobara R et al 2014 J. Phys. Chem. Lett. 5 1953CrossRefGoogle Scholar
  21. 21.
    Umezawa N, Shuxin O and Ye J 2011 Phys. Rev. B 83 035202CrossRefGoogle Scholar
  22. 22.
    Yu J, Zhou P and Li Q 2013 Phys. Chem. Chem. Phys. 15 12040CrossRefGoogle Scholar
  23. 23.
    Yu J C, Yu J, Ho W and Zhao J 2002 J. Photochem. Photobiol. Chem. 148 331CrossRefGoogle Scholar
  24. 24.
    Chawengkijwanich C and Hayata Y 2008 Int. J. Food Microbiol. 123 288CrossRefGoogle Scholar
  25. 25.
    Kim C, Park H, Cha S and Yoon J 2013 Chemosphere 93 2011CrossRefGoogle Scholar
  26. 26.
    You D G, Deepagan V G, Um W, Jeon S, Son S, Chang H et al 2016 Sci. Rep. 6 23200Google Scholar
  27. 27.
    Sugimoto T, Zhou X and Muramatsu A 2003 J. Colloid Interf. Sci. 259 43CrossRefGoogle Scholar
  28. 28.
    Zori M H 2010 J. Inorg. Organomet. Polym. Mater. 21 81CrossRefGoogle Scholar
  29. 29.
    Shen X, Tian B and Zhang J 2013 Catal. Today 201 151CrossRefGoogle Scholar
  30. 30.
    Kim S J, Park S D, Jeong Y H and Park S 1999 J. Am. Ceram. Soc. 82 927CrossRefGoogle Scholar
  31. 31.
    McHale A E and Roth R S 1986 J. Am. Ceram. Soc. 69 827CrossRefGoogle Scholar
  32. 32.
    Koch C C 2007 Nanostructured materials: processing, properties, and applications (Norwich, NY: William Andrew Pub) 2nd ednGoogle Scholar
  33. 33.
    Shokrollahi H 2009 Mater. Des. 30 3374CrossRefGoogle Scholar
  34. 34.
    Bensebaa Z, Bouzabata B, Otmani A, Djekoun A, Kihal A and Greneche J M 2009 Phys. Procedia 2 649CrossRefGoogle Scholar
  35. 35.
    Prieto-Mahaney O O, Murakami N, Abe R and Ohtani B 2009 Chem. Lett. 38 238CrossRefGoogle Scholar
  36. 36.
    Kominami H, Murakami S, Kato J, Kera Y and Ohtani B 2002 J. Phys. Chem. B 106 10501CrossRefGoogle Scholar
  37. 37.
    Kočí K, Obalová L, Matějová L, Plachá D, Lacný Z, Jirkovský J et al 2009 Appl. Catal. B Environ. 89 494CrossRefGoogle Scholar
  38. 38.
    Xu N, Shi Z, Fan Y, Dong J, Shi J and Hu M Z C 1999 Ind. Eng. Chem. Res. 38 373CrossRefGoogle Scholar
  39. 39.
    Zhang X, Huo K, Wang H, Zhang W and Chu P K 2011 J. Nanosci. Nanotechnol. 11 11200CrossRefGoogle Scholar
  40. 40.
    Yan J, Wu G, Guan N, Li L, Li Z and Cao X 2013 Phys. Chem. Chem. Phys. 15 10978CrossRefGoogle Scholar
  41. 41.
    Vargeese A A and Muralidharan K 2011 J. Hazard. Mater. 192 1314CrossRefGoogle Scholar
  42. 42.
    Liu B, Zhao X, Yu J, Fujishima A and Nakata K 2016 Phys. Chem. Chem. Phys. 18 31914CrossRefGoogle Scholar
  43. 43.
    de Carvalho J F, de Medeiros S N, Morales M A, Dantas A L and Carriço A S 2013 Appl. Surf. Sci. 275 84CrossRefGoogle Scholar
  44. 44.
    Rezaee M and Mousavi Khoie S M 2010 J. Alloys Compd. 507 484CrossRefGoogle Scholar
  45. 45.
    Bégin-Colin S, Gadalla A, Le Caër G, Humbert O, Thomas F, Barres O et al 2009 J. Phys. Chem. C 113 16589CrossRefGoogle Scholar
  46. 46.
    Saitow K and Wakamiya T 2013 Appl. Phys. Lett. 103 031916CrossRefGoogle Scholar
  47. 47.
    Ohtani B, Ogawa Y and Nishimoto S 1997 J. Phys. Chem. B 101 3746CrossRefGoogle Scholar
  48. 48.
    Aggelopoulos C A, Dimitropoulos M, Govatsi A, Sygellou L, Tsakiroglou C D and Yannopoulos S N 2017 Appl. Catal. B: Environ. 205 292CrossRefGoogle Scholar
  49. 49.
    Yamato M, Kawano K, Yamanaka Y, Saiga M and Yamada K 2016 Redox Biol. 8 316CrossRefGoogle Scholar
  50. 50.
    Martel D, Guerra A, Turek P, Weiss J and Vileno B 2016 J. Colloid Interf. Sci. 467 300CrossRefGoogle Scholar
  51. 51.
    Vileno B, Turek P, Weiss J and Martel D 2013 ChemPlusChem 78 1330CrossRefGoogle Scholar
  52. 52.
    Sugapriya S, Sriram R and Lakshmi S 2013 Opt. Int. J. Light Electron Opt. 124 4971Google Scholar
  53. 53.
    Langford J I and Wilson A J C 1978 J. Appl. Crystallogr. 11 102CrossRefGoogle Scholar
  54. 54.
    Kim S H, Lee Y J, Lee B H, Lee K H, Narasimhan K and Kim Y D 2006 J. Alloys Compd. 424 204CrossRefGoogle Scholar
  55. 55.
    Suryanarayana C 2001Prog. Mater. Sci. 46 1CrossRefGoogle Scholar
  56. 56.
    Reyes-Coronado D, Rodríguez-Gattorno G, Espinosa-Pesqueira M E, Cab C, de Coss R and Oskam G 2008 Nanotechnology 19 145605CrossRefGoogle Scholar
  57. 57.
    Zhao H, Liu L, Andino J M and Li Y 2013 J. Mater. Chem. A 1 8209CrossRefGoogle Scholar
  58. 58.
    Jassby D, Farner Budarz J and Wiesner M 2012 Environ. Sci. Technol. 46 6934CrossRefGoogle Scholar
  59. 59.
    Melcher J, Barth N, Schilde C, Kwade A and Bahnemann D 2017 J. Mater. Sci. 52 1047CrossRefGoogle Scholar
  60. 60.
    Choudhury B, Dey M and Choudhury A 2013 Int. Nano Lett. 3 25CrossRefGoogle Scholar
  61. 61.
    Burgeth G and Kisch H 2002 Coord. Chem. Rev. 230 41CrossRefGoogle Scholar
  62. 62.
    Simmons E L 1975 Appl. Opt. 14 1380CrossRefGoogle Scholar
  63. 63.
    Kortüm G 2012 Reflectance spectroscopy: principles, methods, applications (Berlin: Springer)Google Scholar
  64. 64.
    Grundmann M 2010 The physics of semiconductors—an introduction including (Heidelberg, Berlin: Springer)Google Scholar
  65. 65.
    Indris S, Amade R, Heitjans P, Finger M, Haeger A, Hesse D et al 2005 J. Phys. Chem. B 109 23274CrossRefGoogle Scholar
  66. 66.
    Paul S and Choudhury A 2014 Appl. Nanosci. 4 839CrossRefGoogle Scholar
  67. 67.
    Hidalgo M C, Colón G and Navío J A 2002 J. Photochem. Photobiol. Chem. 148 341CrossRefGoogle Scholar
  68. 68.
    Zhang Y, Chen J and Li X 2010 Catal. Lett. 139 129CrossRefGoogle Scholar
  69. 69.
    Vileno B, Lekka M, Sienkiewicz A, Jeney S, Stoessel G and Lekki J 2007 Environ. Sci. Technol. 41 5149CrossRefGoogle Scholar
  70. 70.
    Moon G, Kim W, Bokare A D, Sung N and Choi W 2014 Energy Environ. Sci. 7 4023CrossRefGoogle Scholar
  71. 71.
    Chen W and Zhang J 2006 J. Nanosci. Nanotechnol. 6 1159CrossRefGoogle Scholar
  72. 72.
    Vileno B, Marcoux P R, Lekka M, Sienkiewicz A, Fehér T and Forró L 2006 Adv. Funct. Mater. 16 120CrossRefGoogle Scholar
  73. 73.
    Ide Y, Inami N, Hattori H, Saito K, Sohmiya M, Tsunoji N et al 2016 Angew. Chem. Int. Ed. Engl. 55 3600CrossRefGoogle Scholar
  74. 74.
    Gao L and Zhang Q 2001 Scr. Mater. 44 1195CrossRefGoogle Scholar
  75. 75.
    Fenoglio I, Greco G, Livraghi S and Fubini B 2009 Chem. Weinh. Bergstr. Ger. 15 4614Google Scholar
  76. 76.
    Kumar C P, Gopal N O, Wang T C, Wong M S and Ke S C 2006 J. Phys. Chem. B 110 5223CrossRefGoogle Scholar
  77. 77.
    Attwood A L, Murphy D M, Edwards J L, Egerton T A and Harrison R W 2003 Res. Chem. Intermed. 29 449CrossRefGoogle Scholar
  78. 78.
    Graetzel M and Howe R F 1990 J. Phys. Chem. 94 2566CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Youcef Messai
    • 1
    • 2
  • Bertrand Vileno
    • 2
    • 4
  • David Martel
    • 3
  • Philippe Turek
    • 2
    • 4
  • Djamel Eddine Mekki
    • 1
  1. 1.Laboratoire d’Etude des Surfaces et Interfaces de la Matière Solide (LESIMS)Université Badji MokhtarAnnabaAlgeria
  2. 2.Institut de Chimie (UMR 7177, CNRS-Unistra)Université de StrasbourgStrasbourg CedexFrance
  3. 3.CNRS, Institut Charles SadronUniversité de StrasbourgStrasbourgFrance
  4. 4.French EPR Federation of Research (REseau NAtional de RPEinterDisciplinaire (RENARD), Fédération IR-RPE CNRS #3443)StrasbourgFrance

Personalised recommendations