Controllable factors affecting the epitaxial quality of \(\hbox {LaCoO}_{3}\) films grown by polymer-assisted deposition

  • Yanping Zhang
  • Haifeng Liu
  • Ruishi Xie
  • Guohua Ma
  • Jichuan Huo
  • Haibin Wang


\(\hbox {LaCoO}_{3}\) epitaxial films grown on (100) \(\hbox {SrTiO}_{3}\) substrates were prepared by the simple polymer-assisted deposition successfully. Based on the characteristics by X-ray diffractometer, infrared spectroscopy and thermal analyzer, the influence of molecular weight of polyethyleneimine, heat-treatment condition, spin-coating speed on the crystallinity and epitaxial quality of \(\hbox {LaCoO}_{3}\) films were discussed. It is found that the number of –NH groups plays a key role in the cation-chelation of polyethyleneimine. Comparatively, more –NH groups existing in polyethyleneimine with larger molecular weight contribute to the improvement of epitaxial quality of \(\hbox {LaCoO}_{3}\) epitaxial film. When polyethyleneimine begins to release the bound metal ions, higher heat-treatment temperature and a relatively rapid rate of heating can effectively prevent nucleus from growing in other orientations, thereby improving the epitaxial quality of film. Besides, the choice of spin speed will directly affect the thickness and surface roughness of the film, and may even affect the structure and performance of the film. The results will help to understand the cation-chelation mechanism of polyethyleneimine in the polymer-assisted deposition and extend this simple method for preparation of epitaxial films.


Polymer-assisted deposition \(\hbox {LaCoO}_{3}\) epitaxial film polyethyleneimine 



This work was supported by the National Natural Science Foundation of China (grant no. 51502249); the Scientific Research Fund of Education Department of Sichuan Province (grant nos. 16ZA0133 and 15ZB0108); and the Doctoral Foundation of Southwest University of Science and Technology (grant no. 15zx7105).


  1. 1.
    Gawne D T, Bao Y Q, Gao J M, Zubizarreta C, Goikoetxea J and Barriga J 2013 Surf. Coat. Technol. 236 388CrossRefGoogle Scholar
  2. 2.
    Warwick M E A and Binions R 2013 Surf. Coat. Technol. 230 28CrossRefGoogle Scholar
  3. 3.
    Zhu T, Deng Z H, Fang X D, Dong W W, Shao J Z, Tao R H et al 2016 Bull. Mat. Sci. 39 883CrossRefGoogle Scholar
  4. 4.
    Posadas A, Berg M, Seo H, Smith D J, Kirk A P, Zhernokletov D et al 2011 Microelectron. Eng. 88 1444CrossRefGoogle Scholar
  5. 5.
    Herklotz A, Rata A D, Schultz L and Dörr K 2009 Phys. Rev. B 79 092409CrossRefGoogle Scholar
  6. 6.
    Zhi M Y, Huang W X, Shi Q W, Wang M Z and Wang Q B 2016 RSC Adv. 6 67488CrossRefGoogle Scholar
  7. 7.
    Kwon T, Ohnishi T, Mitsuishi K, Ozawa T C and Takada K 2015 J. Power Sources 274 417CrossRefGoogle Scholar
  8. 8.
    Lv P P, Yang C H, Geng F J, Feng C, Jiang X M and Hu G D 2016 J. Sol–Gel Sci. Technol. 78 559CrossRefGoogle Scholar
  9. 9.
    Arai T, Ohno T, Matsuda T, Sakamoto N, Wakiya N and Suzuki H 2016 Thin Solid Films 603 97CrossRefGoogle Scholar
  10. 10.
    Yilmaz C and Unal U 2015 RSC Adv. 5 16082CrossRefGoogle Scholar
  11. 11.
    Jia Q X, McCleskey T M, Burrell A K, Lin Y, Collis G E, Wang H et al 2004 Nat. Mater. 3 529CrossRefGoogle Scholar
  12. 12.
    Liu H F, Shi L, Zhou S M, Zhao J Y, Guo Y Q, Wang C L et al 2013 Surf. Coat. Technol. 226 108CrossRefGoogle Scholar
  13. 13.
    Yue F, Huang W X, Shi Q W, Li D X, Hu Y Y, Xiao Y et al 2014 J. Sol–Gel Sci. Technol. 72 565CrossRefGoogle Scholar
  14. 14.
    Yao D, Shi L, Zhou S M, Liu H F, Wang Y, Zhao J Y et al 2016 J. Phys. D: Appl. Phys. 49 125301CrossRefGoogle Scholar
  15. 15.
    Jain M, Lin Y, Shukla P, Li Y, Wang H, Hundley M F et al 2007 Thin Solid Films 515 6411CrossRefGoogle Scholar
  16. 16.
    Xie C Z, Shi L, Zhou S M, Zhao J Y, Liu H F, Li Y et al 2015 Surf. Coat. Technol. 277 222CrossRefGoogle Scholar
  17. 17.
    Liu H F, Shi L, Guo Y Q, Zhou S M, Zhao J Y, Wang C L et al 2014 J. Alloys Compd. 594 158CrossRefGoogle Scholar
  18. 18.
    Liu Y, Hu J, Li Y, Wei H P, Li X S, Zhang X H et al 2015 Talanta 134 16CrossRefGoogle Scholar
  19. 19.
    Mishra A, Kumar J and Melo J S 2017 Biosens. Bioelectron. 87 332CrossRefGoogle Scholar
  20. 20.
    Rivadulla F, Bi Z X, Bauer E, Rivas-Murias B, Vila-Fungueirino J M and Jia Q X 2013 Chem. Mater. 25 55CrossRefGoogle Scholar
  21. 21.
    Gao B J, An F Q and Liu K K 2006 Appl. Surf. Sci. 253 1946CrossRefGoogle Scholar
  22. 22.
    Molinari R, Poerio T and Argurio P 2008 Chemosphere 70 341CrossRefGoogle Scholar
  23. 23.
    Bessbousse H, Rhlalou T, Verchère J F and Lebrun L 2008 J. Membr. Sci. 307 249CrossRefGoogle Scholar
  24. 24.
    Kobayashi S, Shirasaka H, Suh K D and Uyama H 1990 Polym. J. 22 442CrossRefGoogle Scholar
  25. 25.
    Zhang L, Li P, Huang K, Tang Z, Liu G H and Li Y B 2011 Mater. Lett. 65 1696CrossRefGoogle Scholar
  26. 26.
    Liu H F, Guo Y Q, Xie R S and Ma G H 2016 Nano 11 1650030CrossRefGoogle Scholar
  27. 27.
    Wen Y T, Pan S R, Luo X, Zhang W, Shen T and Feng M 2010 J. Biomater. Sci.: Polym. Ed. 21 1103Google Scholar
  28. 28.
    An F Q and Gao B J 2007 J. Hazard. Mater. 145 495CrossRefGoogle Scholar
  29. 29.
    Jia Y R, Zhang Y, Liu G J, Zhuang G Q, Fan Q G and Shao J Z 2015 J. Coat. Technol. Res. 12 1031CrossRefGoogle Scholar
  30. 30.
    Gao B J, Jiang P F and Lei H B 2006 Mater. Lett. 60 3398CrossRefGoogle Scholar
  31. 31.
    Jia J, Luan S J and Wu A H 2014 Polym. Bull. 11 34Google Scholar
  32. 32.
    Fischer D, Harpe A V, Kunath K, Petersen H, Li Y and Kissel T 2002 Bioconjugate Chem. 13 1124CrossRefGoogle Scholar
  33. 33.
    Li S L, Zhu X D, Sun L C and Ao Q 2013 Chinese Rare Earths 3 010Google Scholar
  34. 34.
    Zhu C F, Xue J H, Wang L and Wang X J 2010 Chin. J. Inorg. Chem. 26 1165Google Scholar
  35. 35.
    Rata A D, Herklotz A, Schultz L and Dörr K 2010 Eur. Phys. J. B 76 215CrossRefGoogle Scholar
  36. 36.
    Fuchs D, Arac E, Pinta C, Schuppler S, Schneider R and Löhneysen H V 2008 Phys. Rev. B 77 014434CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringSouthwest University of Science and TechnologyMianyangPeople’s Republic of China
  2. 2.Analytical and Testing CenterSouthwest University of Science and TechnologyMianyangPeople’s Republic of China
  3. 3.School of Chemistry and Chemical EngineeringMianyang Normal UniversityMianyangPeople’s Republic of China

Personalised recommendations