Materials in harnessing solar power

  • Marka Sandeep Kumar
  • Nagavolu Charanadhar
  • Vadali V S S Srikanth
  • Kota Bhanu Sankara Rao
  • Baldev Raj


Harnessing renewable solar energy through different technologies is greatly dependent on the advancement of solar grade materials’ science and engineering. In this article, the prominent solar energy technologies, namely solar photovoltaic and concentrated solar power and other relevant technologies, and aspects related to various solar grade materials, influence of nanomaterials on enhancement of solar energy harvest, technology–market relations, development of hybrid systems etc., are discussed. The inspiration to write this article is not only to review the existing technologies to harvest solar energy but also to highlight the pertinent and possible solutions thereof, especially from materials perspective.


Renewable solar energy solar PV technology concentrated solar power materials thin films nanomaterials 


  1. 1.
    EIA 2006 U.S. Energy Information Administration Google Scholar
  2. 2.
    Watkins K 2006 Human Development Report Google Scholar
  3. 3.
    Jacobson M Z and Delucchi M A 2011 Energy Policy  391154CrossRefGoogle Scholar
  4. 4.
    Jacobson M Z, Delucchi M A, Bazouin G, Bauer Z A F, Heavey C C, Fisher E et al 2015 Energy Environ. Sci.  8 2093Google Scholar
  5. 5.
  6. 6.
  7. 7.
    Sharma N K, Tiwari P K and Sood Y R 2012 Renew. Sustainable Energy Rev.  16 933CrossRefGoogle Scholar
  8. 8.
  9. 9.
  10. 10.
  11. 11.
    Glavin M E, Chan P K W, Armstrong S and Hurley W G 2008 13 \(^{th}\) International Power Electronics Motion Control Conference  IEEE 1688, Poznan Univ. of Technology, Poznan, PolandGoogle Scholar
  12. 12.
    Samson G T, Undeland T M, Ulleberg O and Vie P J S 2009 International Conference Clean Electrical Power  IEEE 141 Palazzo dei Congressi - Capri, Capri, ItalyGoogle Scholar
  13. 13.
    Thounthong P, Chunkag V, Sethakul P, Sikkabut S, Pierfederici S and Davat B 2011 J. Power Sources  196 313CrossRefGoogle Scholar
  14. 14.
    Fan Z, Razavi H, Do J, Moriwaki A, Ergen O, Chueh Y L et al 2009 Nat. Mater.  8 648CrossRefGoogle Scholar
  15. 15.
    Priolo F, Gregorkiewicz T, Galli M and Krauss T F 2014 Nat. Nanotechnol.  9 19CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Green M A, Emery K, Hishikawa Y, Warta W and Dunlop E D 2016 Prog. Photovolt: Res. Appl.  24 3CrossRefGoogle Scholar
  18. 18.
  19. 19.
    Wadhwa I 2011 Saket Press 157Google Scholar
  20. 20.
  21. 21.
  22. 22.
    Jayawardena K D G I, Rozanski L J, Mills C A, Beliatis M J, Nismy N A and Silva S R P 2013 Nanoscale  5 8411CrossRefGoogle Scholar
  23. 23.
    Campbell P and Green M A 2001 Sol. Energ. Mat. Sol. Cells  65 369CrossRefGoogle Scholar
  24. 24.
    Bohren C F and Huffman D R 2008 Absorption and scattering of light by small particles John Wiley & Sons, ISBN: 978-0-471-29340-8Google Scholar
  25. 25.
    Brongersma M L, Cui Y and Fan S 2014 Nat. Mater.  13 451CrossRefGoogle Scholar
  26. 26.
    Spinelli P, Verschuuren M A and Polman A 2012 Nat. Commun.  3 692CrossRefGoogle Scholar
  27. 27.
    Catchpole K R and Polman A 2008 Appl. Phys. Lett.  93 191113CrossRefGoogle Scholar
  28. 28.
    Spinelli P, Macco B, Verschuuren M A, Kessels W M M and Polman A 2013 Appl. Phys. Lett.  102 233902CrossRefGoogle Scholar
  29. 29.
    Van de Groep J, Spinelli P and Polman A 2012 Nano Lett.  12 3138CrossRefGoogle Scholar
  30. 30.
    Mokkapati S, Beck F J, Polman A and Catchpole K R 2009 Appl. Phys. Lett.  95 053115CrossRefGoogle Scholar
  31. 31.
    Ferry V E, Verschuuren M A, Van Lare M C, Schropp R E I, Atwater H A and Polman A 2011 Nano Lett.  11 4239CrossRefGoogle Scholar
  32. 32.
    Morfa A J, Rowlen K L, Reilly T H, Romero M J and Van de Lagemaat J 2008 Appl. Phys. Lett.  92 013504CrossRefGoogle Scholar
  33. 33.
    Dingemans G and Kessels W M M 2012 J. Vac. Sci. Technol. A: Vacuum, Surfaces, and Films  30 040802CrossRefGoogle Scholar
  34. 34.
    Spinelli P, Hebbink M, de Waele R, Black L, Lenzmann F and Polman A 2011 Nano Lett.  11 1760CrossRefGoogle Scholar
  35. 35.
    Spinelli P and Polman A 2014 IEEE J. Photovolt.  4 554CrossRefGoogle Scholar
  36. 36.
    Spinelli P, Lenzmann F, Weeber A and Polman A 2015 IEEE J. Photovolt.  5 559CrossRefGoogle Scholar
  37. 37.
    Sum T C and Mathews N 2014 Energy Environ. Sci.  7 2518Google Scholar
  38. 38.
    Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc.  131 6050CrossRefGoogle Scholar
  39. 39.
    Im J H, Lee C R, Lee J W, Park S W and Park N G 2011 Nanoscale  3 4088CrossRefGoogle Scholar
  40. 40.
    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro Aet al 2012 Sci. Rep.  2 591CrossRefGoogle Scholar
  41. 41.
    Kim H S, Lee J W, Yantara N, Boix P P, Kulkarni S A, Mhaisalkar S et al 2013 Nano Lett.  13 2412CrossRefGoogle Scholar
  42. 42.
    Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B et al 2012 J. Am. Chem. Soc.  134 17396CrossRefGoogle Scholar
  43. 43.
    Laban W A and Etgar L 2013 Energy Environ. Sci.  6 3249Google Scholar
  44. 44.
    Lee M M, Teuscher J, Miyasaka T, Murakami T N and Snaith H J 2012 Science  338 643CrossRefGoogle Scholar
  45. 45.
    Ball J M, Lee M M, Hey A and Snaith H J 2013 Energy Environ. Sci.  6 1739CrossRefGoogle Scholar
  46. 46.
    Carnie M J, Charbonneau C, Davies M L, Troughton J, Watson T M, Wojciechowski K et al 2013 Chem. Commun.  49 7893CrossRefGoogle Scholar
  47. 47.
    Wojciechowski K, Saliba M, Leijtens T, Abate A and Snaith H J 2014 Energy Environ. Sci.  7 1142CrossRefGoogle Scholar
  48. 48.
    Swarnkar A, Marshall A R, Sanehira E M, Chernomordik B D, Moore D T, Christians J A et al 2016 Science  354 92CrossRefGoogle Scholar
  49. 49.
    Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y et al 2014 Science  345 295CrossRefGoogle Scholar
  50. 50.
    Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K et al 2013 Nature  499 316CrossRefGoogle Scholar
  51. 51.
    Im J H, Jang I H, Pellet N, Grätzel M and Park N G 2014 Nat. Nanotechnol.  9 927CrossRefGoogle Scholar
  52. 52.
    Saliba M, Matsui T, Seo J Y, Domanski K, Correa-Baena J P, Nazeeruddin M K et al 2016 Energy Environ. Sci.  9 1989CrossRefGoogle Scholar
  53. 53.
    Hao F, Stoumpos C C, Cao D H, Chang R P H and Kanatzidis M G 2014 Nat. Photon.  8 489CrossRefGoogle Scholar
  54. 54.
    Noel N K, Stranks S D, Abate A, Wehrenfennig C, Guarnera S, Haghighirad A A et al 2014 Energy Environ. Sci.  7 3061CrossRefGoogle Scholar
  55. 55.
    Murali B and Krupanidhi S B 2014 Dalton Trans.  43 1974CrossRefGoogle Scholar
  56. 56.
    Krebs F C 2009 Sol. Energ. Mat. Sol. Cells  93 394CrossRefGoogle Scholar
  57. 57.
    Søndergaard R R, Markus H and Frederik C K 2013 J. Polym. Sci. Part B Polym. Phys. 51 16Google Scholar
  58. 58.
    Abdin Z, Alim M A, Saidur R, Islam M R, Rashmi W, Mekhilef S et al 2013 Renew. Sustainable Energy Rev.  26 837CrossRefGoogle Scholar
  59. 59.
    Nagavolu C, Susmitha K, Raghavender M, Giribabu L, Bhanu Sankara Rao K, Smith C T G et al 2016 Solar Energy  137 143CrossRefGoogle Scholar
  60. 60.
    Murakami T N, Kawashima N and Miyasaka T 2005 Chem. Commun.  0 3346Google Scholar
  61. 61.
    Cohn A P, Erwin W R, Share K, Oakes L, Westover A S, Carter R E et al 2015 Nano Lett.  15 2727CrossRefGoogle Scholar
  62. 62.
    Ng C H, Lim H N, Hayase S, Harrison I, Pandikumar A and Huang N M 2015 J. Power Sources  296 169CrossRefGoogle Scholar
  63. 63.
    Chien C T, Hiralal P, Wang D Y, Huang I S, Chen C C, Chen C W et al 2015 Small  11 2929CrossRefGoogle Scholar
  64. 64.
    Zhao J, Li Y, Yang G, Jiang K, Lin H, Ade H et al 2016 Nat. Energy  1 15027CrossRefGoogle Scholar
  65. 65.
    Green M A 2006 Third generation photovoltaics (Berlin Heidelberg: Springer)Google Scholar
  66. 66.
  67. 67.
    Chow T T 2010 Appl. Energy  87 365CrossRefGoogle Scholar
  68. 68.
    Franz Trieb C S, Marlene O‘Sullivan T and Pregger C H K 2009 In Solar Power  Solar Paces Conference, Berlin, GermanyGoogle Scholar
  69. 69.
    TERI Newswire 2010 The Hindu Business Line 16(8) Google Scholar
  70. 70.
    TERI Newswire 2010 The Hindu Business Line 16(10) Google Scholar
  71. 71.
  72. 72.
  73. 73.
  74. 74.
  75. 75.
    Heller L 2013 Literature review heat transfer fluidsthermal energy storage systems  CSP Plants STERG ReportGoogle Scholar
  76. 76.
    Srivastva U, Malhotra R and Kaushik S 2015 J. Fundam. Renewable Energy Appl.  5 1CrossRefGoogle Scholar
  77. 77.
    Rodríguez J M, Sánchez D, Martínez G S, Bennouna E G and Ikken B 2016 Solar Energy  140 206CrossRefGoogle Scholar
  78. 78.
    Qiu Z, Li P, Li C, Zhu Q, Zhang T and Wang C 2017 Solar Energy  141 59CrossRefGoogle Scholar
  79. 79.
    Good P, Ambrosetti G, Pedretti A and Steinfeld A 2016 Solar Energy  139 398CrossRefGoogle Scholar
  80. 80.
  81. 81.
    Rogers K D 1993 Powder Diffr.  8 240CrossRefGoogle Scholar
  82. 82.
    Ni G, Li G, Boriskina S V, Li H, Yang W, Zhang T and Chen G 2016 Nat. Energy  1 16126CrossRefGoogle Scholar
  83. 83.
    P S I GmbH 2000 Survey thermal storage parabolic trough power plants NREL/SR -550-27925Google Scholar
  84. 84.
    Zhao C Y and Wu Z G 2011 Sol. Energ. Mat. Sol. Cells  95 3341CrossRefGoogle Scholar
  85. 85.
    Zhao C Y, Zhou D and Wu Z G 2010 14 \(^{{th}}\) International Heat Transfer Conference ASME  7 435Google Scholar
  86. 86.
    Ellmer K 2012 Nat. Photon.  6 809CrossRefGoogle Scholar
  87. 87.
    Hecht D S, Hu L and Irvin G 2011 Adv. Mater.  23 1482CrossRefGoogle Scholar
  88. 88.
    Bony L, Stephen D, Chris H, Maurer E and Newman S 2010 Rocky Mountain Institute Report Google Scholar
  89. 89.
    Jelle B P 2013 Energy Build.  67 334CrossRefGoogle Scholar
  90. 90.
    Ganesh V A, Raut H K, Nair A S and Ramakrishna S 2011 J. Mater. Chem.  21 16304CrossRefGoogle Scholar
  91. 91.
    Solga A, Cerman Z, Striffler B F, Spaeth M and Barthlott W 2007 Bioinspir. Biomim.  2 S126CrossRefGoogle Scholar
  92. 92.
    Sutha S, Suresh S, Raj B and Ravi K R 2017 Sol. Energy Mat. Sol. Cells  165 128CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.School of Engineering Sciences and TechnologyUniversity of HyderabadHyderabadIndia
  2. 2.Mahatma Gandhi Institute of TechnologyHyderabadIndia
  3. 3.National Institute of Advanced StudiesIndian Institute of Science CampusBengaluruIndia

Personalised recommendations