Effect of annealing treatment on optical properties and microstructural variation of \(\hbox {WO}_{3}/\hbox {Ag}/\hbox {WO}_{3}\) multilayer nano-films

  • Aidin Hadifakoor
  • Saeed Nikbin
  • Ghassem Kavei


Structural and optical properties of \(\text {WO}_{3}/\text {Ag}/\text {WO}_{3}\) nano-multilayer composites were investigated for heat mirror applications. \(\text {WO}_{3}/\text {Ag}/\text {WO}_{3}\) thin films were fabricated through a physical vapour deposition method by using electron-beam evaporation at the vacuum chamber at 10\(^{-5}\) Torr. \(\text {WO}_{3}\) nano-layer was fabricated at 40 nm. Annealing treatment was carried out at 100, 200, 300 and 400\(^{\circ }\)C for 1 h after the deposition of first layer of \(\text {WO}_{3}\) on the glass. On \(\text {WO}_{3}\) film, Ag nano-layers with 10, 12 or 14 nm thickness were deposited. Individual layers morphology was investigated using atomic force microscopy (AFM) and deduced that a smoother layer can be achieved after the annealing at 300\(^{\circ }\)C. Ellipsometry analysis was executed to determine both layers, Ag film thickness and inter-diffusion between the \(\text {WO}_{3}\)–Ag–\(\text {WO}_{3}\) layers. It was inferred that there was almost no interfering among the \(\text {WO}_{3}\)\(\text {WO}_{3 }\) layers in the samples with 12 and 14 nm Ag thickness; while silver was deposited on the annealed \(\text {WO}_{3}\) layer at 300\(^{\circ }\)C. UV–visible spectrophotometer showed that the annealing treatment of the first \(\text {WO}_{3}\) layer enhanced the transparency of films in the visible region. The innovations of the present study have been based on the annealing of the films and finding an optimum thickness for the Ag film at 12–14 nm. Heat mirrors efficiency was assessed according to the principle of their optical behaviour and optimum performance obtained for 14 nm of Ag film, deposited on annealed tungsten oxide at 300\(^{\circ }\)C.


\(\text {WO}_{3}/\text {Ag}/\text {WO}_{3}\) annealing heat mirror multilayer ellipsometry 



We would like to acknowledge Dr Mohammad Javad Eshraghi for helpful discussions and support.


  1. 1.
    Fan J C and Bachner F J 1976 Appl. Opt. 15 1012CrossRefGoogle Scholar
  2. 2.
    Selkowitz S 1978 Presented at the 2nd National Passive Solar Conference, March 16–18, Philadelphia, PA, p 2. Available from:
  3. 3.
    Cai G F, Tu J P, Zhou D, Wang X L and Gu C D 2014 Sol. Energy Mater. Sol. Cells 124 103CrossRefGoogle Scholar
  4. 4.
    Zhou D, Xie D, Shi F, Wang D H, Ge X, Xia X H et al 2015 J. Colloid Interface Sci. 460 200CrossRefGoogle Scholar
  5. 5.
    Lampert C M 1981 Sol. Energy Mater. 6 1CrossRefGoogle Scholar
  6. 6.
    Lee C C, Chen S H and Jaing C C 1996 Appl. Opt. 35 5698CrossRefGoogle Scholar
  7. 7.
    Macleod H A 2010 Thin-film optical filters 4th ed CRC Press p 209Google Scholar
  8. 8.
    Granqvist C G 2007 Sol. Energy Mater. Sol. Cells 91 1529CrossRefGoogle Scholar
  9. 9.
    Andersson T and Granqvist C G 1977 J. Appl. Phys. 48 1673CrossRefGoogle Scholar
  10. 10.
    Karlsson B, Valkonen E, Karlsson T and Ribbing C G 1981 Thin Solid Films 86 91CrossRefGoogle Scholar
  11. 11.
    Deb S K 2008 Sol. Energy Mater. Sol. Cells 92 245CrossRefGoogle Scholar
  12. 12.
    Hasan M M, Haseeb A S M A and Masjuki H H 2011 Surf. Eng. 27 382CrossRefGoogle Scholar
  13. 13.
    Al-Kuhaili M F, Al-Aswad A H, Durrani S M A and Bakhtiari I A 2009 Sol. Energy 83 1571CrossRefGoogle Scholar
  14. 14.
    Wang Z, Cai X, Chen Q and Li L 2006 Vacuum 80 438CrossRefGoogle Scholar
  15. 15.
    Fan J C C, Bachner F J, Foley G H and Zavracky P M 1974 Appl. Phys. Lett. 25 693CrossRefGoogle Scholar
  16. 16.
    Fujiwara H and Kondo M 2005 Phys. Rev. B 71 075109CrossRefGoogle Scholar
  17. 17.
    Jellison G and Modine F A 1996 Appl. Phys. Lett. 69 371CrossRefGoogle Scholar
  18. 18.
  19. 19.
  20. 20.
    Sancho-Parramon J, Modreanu M, Bosch S and Stchakovsky M 2008 Thin Solid Films 516 7990CrossRefGoogle Scholar
  21. 21.
    Bortchagovsky E G, Dejneka A, Jastrabik L, Lozovski V Z and Mishakova T O 2015 J. Nanomater. 2015 8CrossRefGoogle Scholar
  22. 22.
    Smith G B, Niklasson G A, Svensson J S E M and Granqvist C G 1986 J. Appl. Phys. 59 571CrossRefGoogle Scholar
  23. 23.
    Valyukh I, Green S, Arwin H, Niklasson G A, Wäckelgård E and Granqvist C G 2010 Sol. Energy Mater. Sol. Cells 94 724CrossRefGoogle Scholar
  24. 24.
    Kavei G and Nikbin S 2015 Mater. Sci.-Poland 33 760Google Scholar
  25. 25.
    Syrrokostas G, Leftheriotis G and Yianoulis P 2015 Solid State Ion 277 11CrossRefGoogle Scholar
  26. 26.
    Wang Z, Chen Q and Cai X 2005 Appl. Surf. Sci. 239 262CrossRefGoogle Scholar
  27. 27.
    Al Mohammad A and Gillet M 2002 Thin Solid Films 408 302CrossRefGoogle Scholar
  28. 28.
  29. 29.
    Bruggemand A G 1935 Ann. Phys. (Berl.) 24 636CrossRefGoogle Scholar
  30. 30.
    Neghabi M, Behjat A, Ghorashi and Salehi S M A 2011 Thin Solid Films 519 5662CrossRefGoogle Scholar
  31. 31.
    Kavei G, Nikbin S and Hadifakoor A 2016 Int. J. Energy Technol. Policy 12 197CrossRefGoogle Scholar
  32. 32.
    Al-Kuhaili M F, Al-Aswad A H, Durrani S M A and Bakhtiari I A 2012 Sol. Energy 86 3183CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Materials and Energy Research CentreTehranIran

Personalised recommendations