3D Architectured polyazomethine gel synthesis: its self-assembled intercalating complexation with nitro aromatic acceptor

  • D S Raghuvanshi
  • N B Shirsath
  • P P Mahulikar
  • J S Meshram


Azomethine is the key linkage in all Schiff base reactions. The present context has efficiently emphasized on the utilization of Schiff base strategy effectively in the synthesis of polyazomethine polymer gel materials. The synthesized polymer gel is characterized by different physical techniques for testing its proper existence such as FESEM analysis, thermal gravimetric analysis, differential scanning calorimeter analysis, FTIR analysis and electron dispersive X-ray scattering analysis. The morphological study has revealed that the material is having 3D lamellar-layered architecture, i.e., layer-by-layer array of polymer chains. The synthesis governs several advantages, such as executing without using any catalyst and water as a green solvent. The present study also checked its complexion ability with nitro aromatic acceptors. The intercalation of nitro aromatic molecule between the two straight chains of the polymer gel is the beautiful peculiarity of these red-coloured complexes.

Graphical Abstract


Azomethine Schiff base complexion ability green solvent 


  1. 1.
    Sinha D, Tiwari A, Singh K, Shukla S, Mishra G, Chandra P et al 2008 Eur. J. Med. Chem. 43 165CrossRefGoogle Scholar
  2. 2.
    Naik G N, Bakale R P, Pathan A H, Ligade S G, Desai S A and Gudasi K B 2013 J. Chem. 13 256Google Scholar
  3. 3.
    Shirsath N B, Gite V V and Meshram J S 2016 Russ. J. Appl. Chem. 89 1893CrossRefGoogle Scholar
  4. 4.
    Mishra N, Poonia K and Kumar D 2013 IJOART 2 1223Google Scholar
  5. 5.
    Lochenie C, Gebauer A, Klimm O, Puchtler F and Weber B 2016 NJC 40 4687CrossRefGoogle Scholar
  6. 6.
    Vicente A I, Joseph A, Ferreira L P, Deus Carvalho M D, Rodrigues V H N, Duttine M et al 2016 Chem. Sci. 7 421CrossRefGoogle Scholar
  7. 7.
    Raghuvanshi D S, Mahulikar P P and Meshram J S 2015 RSC Adv. 5 48078CrossRefGoogle Scholar
  8. 8.
    Raghuvanshi D S, Mahulikar P P and Meshram J S 2015 J. Adv. Sci. Tech. 14 275Google Scholar
  9. 9.
    Li L, Li Z, Wang K, Zhao S, Feng J, Li J et al 2014 J. Agric. Food Chem. 62 11088Google Scholar
  10. 10.
    Qin W, Long S, Panunzio M and Biondi S 2013 Molecules 18 12289Google Scholar
  11. 11.
    Xiang T, Liu X, Yi P, Guo M, Chen Y, Wesdemiotis C et al 2013 Polym. Int. 62 1523CrossRefGoogle Scholar
  12. 12.
    Farcas A and Harabagiu V 2007 Revue Roumaine de Chimie 52 890Google Scholar
  13. 13.
    Zhang Y, Tao L, Shuxi Li and Wei Y 2011 Biomacromolecules 12 2901Google Scholar
  14. 14.
    Roy S, Haldar U and De P 2014 ACS Appl. Mater. Interfaces 6 4241Google Scholar
  15. 15.
    Roy S, Bauri K, Pal S and De P 2014 Polym. Chem. 5 3633Google Scholar
  16. 16.
    Maiti B, Bhuban R and De P 2015 React. Funct. Polym. 93 155CrossRefGoogle Scholar
  17. 17.
    Peng Y, Zhang A-J, Dong M and Wang Y-W 2011 Chem. Commun. 47 4507Google Scholar
  18. 18.
    James T D, Sandanayake K R A S and Shinkai S 1995 Nature 374 347CrossRefGoogle Scholar
  19. 19.
    Ferrand Y, Crump M P and Davis A P 2007 Science 318 622CrossRefGoogle Scholar
  20. 20.
    Dickinson B C, Huynh C and Chang C J 2010 J. Am. Chem. Soc. 132 5915CrossRefGoogle Scholar
  21. 21.
    Liu H L, Peng Q, Wu Y-D, Chen D, Hou X L, Sabat M et al 2010 Angew. Chem. 49 606Google Scholar
  22. 22.
    Kubo Y, Maeda S, Tokita S and Kubo M 1996 Nature 382 524CrossRefGoogle Scholar
  23. 23.
    Tsubaki K, Tanima D, Nuruzzaman M, Kusumoto T, Fuji K and Kawabata T 2005 J. Org. Chem. 70 4616CrossRefGoogle Scholar
  24. 24.
    Laurieri N, Crawford M H J, Kawamura A, Westwood I M, Robinson J, Fletcher A M et al 2010 J. Am. Chem. Soc. 132 3239CrossRefGoogle Scholar
  25. 25.
    Chen L, McBranch D W, Wang H-L, Helgeson R, Wudl F and Whitten D G 1999 Proc. Natl. Acad. Sci. USA 96 12292Google Scholar
  26. 26.
    Rose A, Zhu Z, Madigan C, Swager T M and Bulovic V 2005 Nature 434 879CrossRefGoogle Scholar
  27. 27.
    Radhika V, Proikas-Cezanne T, Jayaraman M, Onesime D, Ha J H and Dhanasekaran D N 2007 Nat. Chem. Biol. 3 330CrossRefGoogle Scholar
  28. 28.
    Toal S J and Trogler W C 2006 J. Mater. Chem. 16 2883CrossRefGoogle Scholar
  29. 29.
    Sohn H, Calhoun R M, Sailor M J and Trogler W C 2001 Angew. Chem. 40 2105CrossRefGoogle Scholar
  30. 30.
    Zer A U, Ercag E and Apak R 2004 Anal. Chim. Acta 505 93Google Scholar
  31. 31.
    Germain M E and Knapp M J 2008 J. Am. Chem. Soc. 130 5423Google Scholar
  32. 32.
    Forzani E S, Lu D, Leright M J, Aguilar A D, Tsow F, Iglesias R A et al 2009 J. Am. Chem. Soc. 131 1391CrossRefGoogle Scholar
  33. 33.
    Park J S, Derf F Le, Bejger C M, Lynch V M, Sessler J L, Nielsen K A et al 2010 Chem. Eur. J. 16 854Google Scholar
  34. 34.
    Akhavan J 2004 The chemistry of explosives (Cambridge: Royal Society of Chemistry)Google Scholar
  35. 35.
    Wyman J F, Serve M P, Hobson D W, Lee L H and Uddin D E 1992 J. Toxicol. Environ. Health Part A 37 327CrossRefGoogle Scholar
  36. 36.
    Shankaran D R, Gobi K V, Matsumoto K, Imato T, Toko K and Miura N 2004 Sens. Actuators B 100 454CrossRefGoogle Scholar
  37. 37.
    Tan S-Z, Hu Y-J, Chen J-W, Shen G-L and Yu R-Q 2007 Sens. Actuators B 124 73CrossRefGoogle Scholar
  38. 38.
    Laurenti M, Pez-Cabarcos E Lo, Garcıa-Blanco F, Frick B and Rubio-Retama J 2009 Langmuir 25 9584Google Scholar
  39. 39.
    Alam M, Naser M, Ahmad N and Naushad Mu 2016 J. Chem. Article ID 5623126Google Scholar
  40. 40.
    Wang C, Shieh S, LeGoff E and Kanatzidis G 1996 Macromolecules 29 3156Google Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • D S Raghuvanshi
    • 1
  • N B Shirsath
    • 1
  • P P Mahulikar
    • 1
  • J S Meshram
    • 2
  1. 1.School of Chemical SciencesNorth Maharashtra UniversityJalgaonIndia
  2. 2.Department of ChemistryRashtrasant Tukadoji Maharaj Nagpur UniversityNagpurIndia

Personalised recommendations