On the preparation and characterization of superparamagnetic nanoparticles with Gelidium robustum agar coating for biomedical applications

  • Dianela Díaz-Bleis
  • Juan José Alvarado-Gil
  • Arturo I Martínez
  • Yolanda Gómez-y-Gómez
  • Yolanda Freile-Pelegrín


Superparamagnetic nanoparticles coated with natural polysaccharides are of great interest for biomedical applications due to their fast response to an external and high-frequency electromagnetic field and their biocompatibility. One of the greatest challenges in the development of these nanoparticles is related to the specific characteristics and properties of the polysaccharide used, which could guarantee the development of specific sizes, crystalline structure, magnetic response and its reproducibility. In this study, we present the preparation of magnetite (\(\hbox {Fe}_{3}\hbox {O}_{4})\) and cobalt ferrite (\(\hbox {CoFe}_{2}\hbox {O}_{4})\) nanoparticles by the co-precipitation method in aqueous solutions at different concentrations (1, 2, 3, 4 and 5%) of a very well-characterized agar obtained from the red marine algae Gelidium robustum. It is shown that under the same experimental conditions and using the adequate precursors, coated high-crystallinity magnetite nanoparticles are obtained. In contrast, for cobalt ferrite, our results indicated the formation of coated low-crystallinity \(\hbox {CoFe}_{2}\hbox {O}_{4}\) particles. Superparamagnetic nanoparticles (with crystal grain size < 8 nm) of \(\hbox {Fe}_{3}\hbox {O}_{4}\) agar coated at \(\ge \) 3% agar showed high-saturation magnetization and high degree of biocompatibility and can be considered as promising candidates for biomedical applications.


Agar superparamagnetic nanoparticles magnetite cobalt ferrite 



The first author acknowledges CINVESTAV and CONACYT (375342) for the scholarship support to carry out this research work. We want to express our acknowledgment to C Chávez Quintal for her technical support, and to A R Cristobal Ramos for her valuable help in obtaining SEM images.


  1. 1.
    Bañobre-López M, Teijeiro A and Rivas J 2013 Rep. Pract. Oncol. Radiother. 18 397CrossRefGoogle Scholar
  2. 2.
    Mahmoudi M, Simchi A, Milani A S and Stroeve P 2009 J. Colloid Interf. Sci. 336 510CrossRefGoogle Scholar
  3. 3.
    Mahmoudi M, Sant S, Wang B, Laurent S and Senet T 2011 Adv. Drug Deliv. Rev. 63 24Google Scholar
  4. 4.
    Karimi Z, Karimi L and Shokrollahi H 2013 Mat. Sci. Eng. C 33 2465CrossRefGoogle Scholar
  5. 5.
    Uthaman S, Joon Lee S J, Cherukula K, Cho C S and Park I P 2015 Biomed. Res. Int. 2015 959175CrossRefGoogle Scholar
  6. 6.
    Craigie J S 1990 Biology of the red algae (Cambridge: Cambridge University Press) p 221Google Scholar
  7. 7.
    Armisen R and Galatas F 2000 Handbook of hydrocolloids (Boca Raton: CRC Press) p 21Google Scholar
  8. 8.
    Murano E 1995 J. Appl. Phycol. 7 245CrossRefGoogle Scholar
  9. 9.
    Lahaye M and Rochas C 1991 Hydrobiologia 221 137CrossRefGoogle Scholar
  10. 10.
    Hsieh S, Huang B Y, Hsieh S L, Wu C C, Wu C H, Lin P Y et al 2010 Nanotechnology 21 445601CrossRefGoogle Scholar
  11. 11.
    Robledo D 2005 Seaweed resources of the world (Japan: Japan International Cooperation Agency—JICA) p 331Google Scholar
  12. 12.
    Díaz-Bleis D, Freile-Pelegrín Y, Vales-Pinzón C, Martínez-Torres P and Alvarado-Gil J J 2012 Int. J. Thermophys. 33 2125CrossRefGoogle Scholar
  13. 13.
    Díaz-Bleis D, Freile-Pelegrín Y, Vales-Pinzón C and Alvarado-Gil J J 2014 Carbohydr. Polym. 99 84CrossRefGoogle Scholar
  14. 14.
    Nath D and Banerjee P 2013 Environ. Toxicol. Pharmacol. 36 997CrossRefGoogle Scholar
  15. 15.
    Mahdavinia G R, Baghban A, Zorofi S and Massoudi A 2014 J. Mater. Environ. Sci. 5 330Google Scholar
  16. 16.
    Mosmann T 1983 J. Immunol. Methods 65 55CrossRefGoogle Scholar
  17. 17.
    Gillot B 1994 Vib. Spectrosc. 6 127CrossRefGoogle Scholar
  18. 18.
    Ma H, Qi X, Maitani Y and Nagai T 2007 Int. J. Pharm. 333 177CrossRefGoogle Scholar
  19. 19.
    Andrade A L, Souza D M, Pereira M C, Fabris J D and Domingues R Z 2009 Cerâmica 55 420CrossRefGoogle Scholar
  20. 20.
    Jacintho G V M, Brolo A G, Corio P, Suarez P A Z and Rubim J C J 2009 J. Phys. Chem. C 113 7684CrossRefGoogle Scholar
  21. 21.
    Pui A, Gherca D and Carja G 2001 J. Nanomater. 6 1783Google Scholar
  22. 22.
    Pereira L, Amado A M, Critchley A T, van de Velde F and Ribeiro-Claro P J A 2009 Food Hydrocoll. 23 1903CrossRefGoogle Scholar
  23. 23.
    Matsuhiro B 1996 Hydrobiologia 326–327 481CrossRefGoogle Scholar
  24. 24.
    Cristiaen D and Bodard M 1983 Bot. Mar. 26 425Google Scholar
  25. 25.
    Madera-Santana T J, Misra M, Drzal L T, Robledo D and Freile-Pelegrín Y 2009 Polym. Eng. Sci. 49 1117CrossRefGoogle Scholar
  26. 26.
    Covaliu C I, Berger D, Matei C, Diamandescu L,Vasile E, Cristea C et al 2011 Nanopart. Res. 13 6169CrossRefGoogle Scholar
  27. 27.
    Uribe Madrid S I, Pal U and Sánchez-De Jesús F 2014 Adv. Nano Res. 2 187CrossRefGoogle Scholar
  28. 28.
    Sugimoto T 2000 Fine particles, synthesis, characterization and mechanism of growth; Surfactan Science Series 92 (New York: Marcel Dekker) p 58Google Scholar
  29. 29.
    Cui H, Zhao Y, Ren W, Wang M and Liu Y J 2013 J. Alloys Compd. 562 33CrossRefGoogle Scholar
  30. 30.
    Meng Y Y, Liu Z W, Dai H C, Yu H Y, Zeng D C, Shukla S et al 2012 Powder Technol. 229 270CrossRefGoogle Scholar
  31. 31.
    Matijevićn E J 1977 Colloid Interf. Sci. 58 374CrossRefGoogle Scholar
  32. 32.
    Cushing B L, Kolesnichenko V L and Connor C J O 2004 Chem. Rev. 104 3893CrossRefGoogle Scholar
  33. 33.
    Cao X and Gu L 2005 Nanotechnology 16 180CrossRefGoogle Scholar
  34. 34.
    Joshi M H, Lin Y P, Aslam M, Prasad P V, Schultz-Sikma E A, Edelman R et al 2009 J. Phys. Chem. C 113 17761CrossRefGoogle Scholar
  35. 35.
    Zhao F, Zhang B and Feng L 2012 Mater. Lett. 68 112CrossRefGoogle Scholar
  36. 36.
    Kim D H, Lee S H, Im K H, Kim K N, Kim K M, Shim I B et al 2006 Curr. Appl. Phys. 6S1 242.Google Scholar
  37. 37.
    Freile-Pelegrín Y, Robledo D and Serviere-Zaragoza E 1999 Hydrobiologia 398/399 501Google Scholar
  38. 38.
    Freile-Pelegrín Y, Madera-Santana T J, Robledo D, Veleva L, Quintana P and Azamar J A 2007 Polym. Degrad. Stab. 92244CrossRefGoogle Scholar
  39. 39.
    Issa B, Obaidat I M, Albiss B A and Haik Y 2013 Int. J. Mol. Sci. 14 21266CrossRefGoogle Scholar
  40. 40.
    Larumbe S, Gomez-Polo C, Perez-Landazabal J and Pastor J M 2012 J. Phys. Condens. Matter 24 1CrossRefGoogle Scholar
  41. 41.
    Kolhatkar A G, Jamison A C, Litvinov D, Willson R C and Lee T R 2013 Int. J. Mol. Sci. 14 15977CrossRefGoogle Scholar
  42. 42.
    Chatterjee J, Haik Y and Chen C-J J 2003 J. Magn. Magn. Mater. 257 113CrossRefGoogle Scholar
  43. 43.
    Tartaj P, Del Puerto Morales M, Veintemillas-Verdaguer S, Gonzalez-Carreño T and Serna C J 2003 J. Phys. D: Appl. Phys. 36 R182CrossRefGoogle Scholar
  44. 44.
    Li Z, Kawashita M, Araki N, Mitsumori M, Hiraoka M and Doi M 2010 Mat. Sci. Eng. C 30 990CrossRefGoogle Scholar
  45. 45.
    Naqvi S, Samim M, Abdin M, Ahmed F J, Maitra A, Prashant C et al 2010 Int. J. Nanomed. 5 983CrossRefGoogle Scholar
  46. 46.
    Karlsson H L, Cronholm P, Gustafsson J and Möller L 2008 Chem. Res. Toxicol. 21 1726CrossRefGoogle Scholar
  47. 47.
    Apopa P L, Qian Y, Shao R, Guo N L, Schwegler-Berry D, Pacurari M et al 2009 Part. Fibre Toxicol. 6 1CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Dianela Díaz-Bleis
    • 1
  • Juan José Alvarado-Gil
    • 2
  • Arturo I Martínez
    • 3
  • Yolanda Gómez-y-Gómez
    • 4
  • Yolanda Freile-Pelegrín
    • 1
  1. 1.Marine Resources DepartmentCINVESTAV-MéridaMéridaMexico
  2. 2.Applied Physics DepartmentCINVESTAV-MéridaMéridaMexico
  3. 3.CINVESTAV-SaltilloCoahuilaMexico
  4. 4.Pharmacology Laboratory, Instituto Politécnico NacionalUnidad Profesional Interdisciplinaria de BiotecnologíaMexicoMexico

Personalised recommendations