Application of Various Delivery Methods for CRISPR/dCas9


As gene-editing technology has become more and more popular in the life sciences, CRISPR has brought good news to scientific researchers because of its efficiency, convenience, and wide application. Its wide application has also promoted the development of basic scientific research, agriculture, basic medicine, and clinical treatment. However, how the CRISPR/dCas9 system is effectively delivered to the target organs or cells is still unknown. This paper briefly introduces the CRISPR/dCas9 system and then lists some common delivery methods and their characteristics.

This is a preview of subscription content, log in to check access.

Fig. 1


  1. 1.

    Mojica, F. J. M., Ferrer, C., Juez, G., & Rodriguezvalera, F. (1995). Long stretches of short tandem repeats are present in the largest replicons of the archaea haloferax-mediterranei and haloferax-volcanii and could be involved in replicon partitioning. Molecular Microbiology.,17(1), 85–93.

    CAS  PubMed  Google Scholar 

  2. 2.

    Barrangou, R., Fremaux, C., Deveau, H., et al. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science (New York, NY).,315, 1709–1712.

    CAS  Google Scholar 

  3. 3.

    East-Seletsky, A., O’Connell, M. R., Knight, S. C., et al. (2016). Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature,538(7624), 270–273.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Abudayyeh, O. O., Gootenberg, J. S., Essletzbichler, P., et al. (2017). RNA targeting with CRISPR–Cas13. Nature,550(7675), 280–284.

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science,337(6096), 816–821.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Zhang, F., Wen, Y., & Guo, X. (2014). CRISPR/Cas9 for genome editing: progress, implications and challenges. Human Molecular Genetics,23, R40–R46.

    CAS  Google Scholar 

  7. 7.

    Grissa, I., Vergnaud, G., & Pourcel, C. (2007). The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics,8, 172.

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Mussolino, C., & Cathomen, T. (2013). RNA guides genome engineering. Nature Biotechnology.,31, 208–209.

    CAS  PubMed  Google Scholar 

  9. 9.

    Lieber, M. R. (2010). The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annual Review of Biochemistry,79, 181–211.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Mojica, F. J. M., Díez-Villaseñor, C., García-Martínez, J., & Almendros, C. (2009). Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology,155(3), 733–740.

    CAS  PubMed  Google Scholar 

  11. 11.

    Mussolino, C., Mlambo, T., & Cathomen, T. (2015). Proven and novel strategies for efficient editing of the human genome. Current opinion in pharmacology.,24, 105–112.

    CAS  PubMed  Google Scholar 

  12. 12.

    Ran, F. A., Cong, L., Yan, W. X., et al. (2015). In vivo genome editing using Staphylococcus aureus Cas9. Nature,520(7546), 186–191.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Gilbert, L. A., Larson, M. H., Morsut, L., et al. (2013). CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell,154(2), 442–451.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Sander, J. D., & Joung, J. K. (2014). CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology,32(4), 347–355.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Cheng, A. W., Wang, H. Y., Yang, H., et al. (2013). Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Research,23(10), 1163–1171.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Maeder, M. L., Linder, S. J., Cascio, V. M., Fu, Y., Ho, Q. H., & Joung, J. K. (2013). CRISPR RNA-guided activation of endogenous human genes. Nature Methods,10(10), 977–979.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Gilbert Luke, A., Horlbeck Max, A., Adamson, B., et al. (2014). Genome-scale CRISPR-mediated control of gene repression and activation. Cell,159(3), 647–661.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S., & Vale, R. D. (2014). A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell,159(3), 635–646.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Chavez, A., Scheiman, J., Vora, S., et al. (2015). Highly efficient Cas9-mediated transcriptional programming. Nature methods.,12(4), 326–328.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Konermann, S., Brigham, M. D., Trevino, A. E., et al. (2015). Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature,517(7536), 583–588.

    CAS  PubMed  Google Scholar 

  21. 21.

    Dominguez, A. A., Lim, W. A., & Qi, L. S. (2016). Beyond editing: Repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nature Reviews Molecular Cell Biology,17(1), 5–15.

    CAS  PubMed  Google Scholar 

  22. 22.

    Qi, L. S., Larson, M. H., Gilbert, L. A., et al. (2013). Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell,152(5), 1173–1183.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Piatek, A., Ali, Z., Baazim, H., et al. (2015). RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors. Plant Biotechnology Journal,13(4), 578–589.

    CAS  PubMed  Google Scholar 

  24. 24.

    Singh, A. K., Carette, X., Potluri, L.-P., et al. (2016). Investigating essential gene function in Mycobacterium tuberculosis using an efficient CRISPR interference system. Nucleic Acids Research,44(18), e143–e143.

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Lino, C. A., Harper, J. C., Carney, J. P., & Timlin, J. A. (2018). Delivering CRISPR: A review of the challenges and approaches. Drug Deliv.,25(1), 1234–1257.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Horii, T., Arai, Y., Yamazaki, M., et al. (2014). Validation of microinjection methods for generating knockout mice by CRISPR/Cas-mediated genome engineering. Scientific Reports.,4, 4513.

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Yang, H., Wang, H., Shivalila, C., Cheng, A., Shi, L., & Jaenisch, R. (2013). One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell,154(6), 1370–1379.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Hara, S., Tamano, M., Yamashita, S., et al. (2015). Generation of mutant mice via the CRISPR/Cas9 system using FokI-dCas9. Scientific Reports.,5(1), 11221.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Tröder, S. E., Ebert, L. K., Butt, L., Assenmacher, S., Schermer, B., & Zevnik, B. (2018). An optimized electroporation approach for efficient CRISPR/Cas9 genome editing in murine zygotes. PLoS ONE,13(5), e0196891–e0196891.

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Li, S., Zhang, A., Xue, H., Li, D., & Liu, Y. (2017). One-step piggyBac transposon-based CRISPR/Cas9 activation of multiple genes. Molecular Therapy Nucleic Acids.,8, 64–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Saayman, S. M., Lazar, D. C., Scott, T. A., et al. (2016). Potent and targeted activation of latent HIV-1 using the CRISPR/dCas9 activator complex. Molecular Therapy,24(3), 488–498.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Suda, T., & Liu, D. (2015). Hydrodynamic delivery. Advances in Genetics,89, 89–111.

    CAS  PubMed  Google Scholar 

  33. 33.

    Zhou, H., Liu, J., Zhou, C., et al. (2018). In vivo simultaneous transcriptional activation of multiple genes in the brain using CRISPR–dCas9-activator transgenic mice. Nature Neuroscience,21(3), 440–446.

    CAS  PubMed  Google Scholar 

  34. 34.

    Li, L., He, Z. Y., Wei, X. W., Gao, G. P., & Wei, Y. Q. (2015). Challenges in CRISPR/CAS9 delivery: potential roles of nonviral vectors. Human Gene Therapy,26(7), 452–462.

    CAS  PubMed  Google Scholar 

  35. 35.

    Jost, M., Chen, Y., Gilbert, L. A., et al. (2017). Combined CRISPRi/a-based chemical genetic screens reveal that Rigosertib is a microtubule-destabilizing agent. Molecular Cell,68(1), 210–223.e216.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Hardcastle, N., Boulis, N. M., & Federici, T. (2018). AAV gene delivery to the spinal cord: Serotypes, methods, candidate diseases, and clinical trials. Expert Opinion on Biological Therapy.,18(3), 293–307.

    CAS  PubMed  Google Scholar 

  37. 37.

    Lykken, E. A., Shyng, C., Edwards, R. J., Rozenberg, A., & Gray, S. J. (2018). Recent progress and considerations for AAV gene therapies targeting the central nervous system. Journal of Neurodevelopmental Disorders.,10(1), 16.

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Samulski, R. J., & Muzyczka, N. (2014). AAV-mediated gene therapy for research and therapeutic purposes. Annu Rev Virol.,1, 427–451.

    PubMed  Google Scholar 

  39. 39.

    Wu, Z. J., Yang, H. Y., & Colosi, P. (2010). Effect of genome size on AAV vector packaging. Molecular Therapy,18(1), 80–86.

    CAS  PubMed  Google Scholar 

  40. 40.

    Matharu, N., Rattanasopha, S., Tamura, S., et al. (2019). CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency. Science,363(6424), eaau0629.

    CAS  PubMed  Google Scholar 

  41. 41.

    Nelson, C. E., Wu, Y., Gemberling, M. P., et al. (2019). Long-term evaluation of AAV-CRISPR genome editing for duchenne muscular dystrophy. Nature Medicine,25(3), 427–432.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Santiago-Fernández, O., Osorio, F. G., Quesada, V., et al. (2019). Development of a CRISPR/Cas9-based therapy for Hutchinson–Gilford progeria syndrome. Nature Medicine,25(3), 423–426.

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Beyret, E., Liao, H.-K., Yamamoto, M., et al. (2019). Single-dose CRISPR–Cas9 therapy extends lifespan of mice with Hutchinson–Gilford progeria syndrome. Nature Medicine,25(3), 419–422.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Sun, J. Y., Anand-Jawa, V., Chatterjee, S., & Wong, K. K. (2003). Immune responses to adeno-associated virus and its recombinant vectors. Gene Therapy,10(11), 964–976.

    CAS  PubMed  Google Scholar 

  45. 45.

    Verma, R., Sahu, R., Singh, D. D., & Egbo, T. E. (2019). A CRISPR/Cas9 based polymeric nanoparticles to treat/inhibit microbial infections. Seminars in Cell & Developmental Biology,96, 44–52.

    CAS  Google Scholar 

  46. 46.

    Liu, Q., Zhao, K., Wang, C., et al. (2018). Multistage delivery nanoparticle facilitates efficient CRISPR/dCas9 activation and tumor growth suppression in vivo. Advanced Science,6, 1801423.

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Josipović, G., Tadić, V., Klasić, M., et al. (2019). Antagonistic and synergistic epigenetic modulation using orthologous CRISPR/dCas9-based modular system. Nucleic Acids Research,47(18), 9637–9657.

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Weltner, J., Balboa, D., Katayama, S., et al. (2018). Human pluripotent reprogramming with CRISPR activators. Nature Communications,9(1), 2643–2643.

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Li, Z., Zhang, D., Xiong, X., et al. (2017). A potent Cas9-derived gene activator for plant and mammalian cells. Nature Plants.

    Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Qiu, W., Xu, Z., Zhang, M., et al. (2019). Determination of local chromatin interactions using a combined CRISPR and peroxidase APEX2 system. Nucleic Acids Research,47(9), e52–e52.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Koo, B., Kim, D. E., Kweon, J., et al. (2018). CRISPR/dCas9-mediated biosensor for detection of tick-borne diseases. Sensor Actuators B-Chemical,273, 316–321.

    CAS  Google Scholar 

  52. 52.

    Baumgart, M., Unthan, S., Kloß, R., et al. (2018). Corynebacterium glutamicum chassis C1*: Building and testing a novel platform host for synthetic biology and industrial biotechnology. ACS Synthetic Biology,7(1), 132–144.

    CAS  PubMed  Google Scholar 

  53. 53.

    Becker, J., Rohles, C. M., & Wittmann, C. (2018). Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products. Metabolic Engineering.,50, 122–141.

    CAS  PubMed  Google Scholar 

  54. 54.

    Izumi, Y., Chibata, I., & Itoh, T. (1978). Production and utilization of amino acids. Angewandte Chemie (International ed. in English),17(3), 176–183.

    CAS  Google Scholar 

  55. 55.

    Cleto, S., Jensen, J. V., Wendisch, V. F., & Lu, T. K. (2016). Corynebacterium glutamicum metabolic engineering with CRISPR interference (CRISPRi). ACS Synthetic Biology,5(5), 375–385.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Yin, H., Song, C.-Q., Dorkin, J. R., et al. (2016). Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nature Biotechnology,34(3), 328–333.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Levy, J. M., Yeh, W.-H., Pendse, N., et al. (2020). Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nature Biomedical Engineering.,4(1), 97–110.

    CAS  PubMed  Google Scholar 

  58. 58.

    Makarova, K. S., Zhang, F., & Koonin, E. V. (2017). SnapShot: Class 2 CRISPR-Cas systems. Cell,168(1–2), 328–328.

    CAS  PubMed  Google Scholar 

  59. 59.

    Strecker, J., Jones, S., Koopal, B., et al. (2019). Engineering of CRISPR-Cas12b for human genome editing. Nature Communications,10(1), 212–212.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Doudna, J. A. (2020). The promise and challenge of therapeutic genome editing. Nature,578(7794), 229–236.

    CAS  PubMed  Google Scholar 

  61. 61.

    Cho, G. Y., Schaefer, K. A., Bassuk, A. G., Tsang, S. H., & Mahajan, V. B. (2018). CRISPR genome surgery in the retina in light of off-targeting. Retina,38(8), 1443–1455.

    PubMed  PubMed Central  Google Scholar 

Download references


We thank the National Key Specialty Construction Project of Clinical Pharmacy (Grant No. 30305030698), the Science & Technology Program of Sichuan Province (Grant Nos. 2009SZ0226, 2014FZ0103, 2015JQO027, 2015ZR0160, 20ZDYF1490, and 20CXTD0043), the Health Department of Sichuan Province Grant Nos. 100491, 120111, and 17ZD038), Sichuan Cancer Hospital (Grant No. YB2019001), Chengdu City Science and Technology Project (Grant No. 11PPYB010SF-289), the Young Scholars Foundation of Sichuan Provincial People’s Hospital (Grant Nos. 30305030606 and 30305030859), the Cadre Health Care Research Project of Sichuan Province (Grant No. 2019-801), and Zambon Pharmaceutical Scientific Research Foundation of the Chengdu Pharmaceutical Association (Grant No. 201905).

Author information



Corresponding author

Correspondence to Hongtao Xiao.

Ethics declarations

Conflict of interest

All the authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Liao, Z., Chen, Y. et al. Application of Various Delivery Methods for CRISPR/dCas9. Mol Biotechnol (2020).

Download citation


  • dCas9
  • Delivery