RETRACTED ARTICLE: Molecular Cloning of an Amino Acid Permease Gene and Structural Characterization of the Protein in Common Bean (Phaseolus vulgaris L.)

This article was retracted on 06 October 2020

This article has been updated


Plants synthesize amino acids by collateral metabolic pathways using primary elements carbon and oxygen from air, hydrogen from water in soil and nitrogen from soil. Following synthesis, amino acids are immediately used for metabolism, transient storage or transported to the phloem. Different families of transporters have been identified for import of amino acids into plant cells. The first identified amino acid transporter, amino acid permease 1 (AAP1) in Arabidopsis belongs to a family of eight members and transports acidic, neutral, and basic amino acids. Legumes fix atmospheric nitrogen through a symbiotic relationship with root nodules bacteria. Following fixation, nitrogen is reduced to amino acids and is exported via different amino acid transporters. However, information is lacking about the structure of these important classes of amino acid transporter proteins in plant. We have amplified AAP from Phaseolus vulgaris, an economically important leguminous plant grown all over the world, and sequenced. The sequence has been characterized in silico and a three-dimensional structure of AAP has been predicted and validated. The information obtained not only enhances the knowledge about the structure of an amino acid permease gene in P. vulgaris, but will also help in designing protein–ligand studies using this protein as well.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Change history


  1. 1.

    Okumoto, S., & Pilot, G. (2011). Amino acid export in plants: A missing link in nitrogen cycling. Molecular Plant, 4, 453–463.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Lalonde, S., Wipf, D., & Frommer, W. B. (2004). Transport mechanisms for organic forms of carbon and nitrogen between source and sink. Annual Review of Plant Biology, 55, 341–372.

    CAS  PubMed  Google Scholar 

  3. 3.

    Martinoia, E., Maeshima, M., & Neuhaus, H. E. (2007). Vacuolar transporters and their essential role in plant metabolism. Journal of Experimental Botany, 58, 83–102.

    CAS  PubMed  Google Scholar 

  4. 4.

    Lunn, J. E. (2007). Compartmentation in plant metabolism. Journal of Experimental Botany, 58, 35–47.

    CAS  PubMed  Google Scholar 

  5. 5.

    Elashry, A., Okumoto, S., Siddique, S., et al. (2013). The AAP gene family for amino acid permeases contributes to development of the cyst nematode Heterodera schachtii in roots of Arabidopsis. Plant Physiology and Biochemistry, 70, 379–386.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Rentsch, D., Schmidt, S., & Tegeder, M. (2007). Transporters for uptake and allocation of organic nitrogen compounds in plants. Federation of European Biochemical Societies Letters, 581, 2281–2289.

    CAS  PubMed  Google Scholar 

  7. 7.

    Tegeder, M., & Rentsch, D. (2010). Uptake and partitioning of amino acids and peptides. Molecular Plant, 3, 997–1011.

    CAS  PubMed  Google Scholar 

  8. 8.

    Tegeder, M. (2014). Transporters involved in source to sink partitioning of amino acids and ureides: Opportunities for crop improvement. Journal of Experimental Botany, 65, 1865–1878.

    CAS  PubMed  Google Scholar 

  9. 9.

    Ortiz-Lopez, A., Chang, H. C., & Bush, D. R. (2000). Amino acid transporters in plants. Biochimica et Biophysica Acta, 1465, 275–280.

    CAS  PubMed  Google Scholar 

  10. 10.

    Frommer, W. B., Hummel, S., & Riesmeier, J. W. (1993). Expression cloning in yeast of a cDNA encoding a broad specificity amino acid permease from Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 90, 5944–5948.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Hsu, L. C., Chiou, T. J., Chen, L., et al. (1993). Cloning a plant amino acid transporter by functional complementation of a yeast amino acid transport mutant. Proceedings of the National Academy of Sciences of the United States of America, 90, 7441–7445.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Fischer, W. N., Kwart, M., Hummel, S., et al. (1995). Substrate specificity and expression profile of amino acid transporters (AAPs) in Arabidopsis. Journal of Biological Chemistry, 270, 16315–16320.

    CAS  PubMed  Google Scholar 

  13. 13.

    Tegeder, M. (2012). Transporters for amino acids in plant cells: Some functions and many unknowns. Current Opinion in Plant Biology, 15, 315–321.

    CAS  PubMed  Google Scholar 

  14. 14.

    Lalanne, E., Mathieu, C., Roche, O., Vedel, F., et al. (1997). Structure and specific expression of a Nicotiana sylvestris putative amino-acid transporter gene in mature and in vitro germinating pollen. Plant Molecular Biology, 35, 855–864.

    CAS  PubMed  Google Scholar 

  15. 15.

    Zhao, Y., Xu, Y., Wang, Z., Zhang, J., et al. (2017). Genome-wide identification and characterization of an amino acid permease gene family in Nicotiana tabacum. RSC Advances, 7, 38081–38090.

    CAS  Google Scholar 

  16. 16.

    Koch, W., Kwart, M., Laubner, M., Heineke, D., et al. (2003). Reduced amino acid content in transgenic potato tubers due to antisense inhibition of the leaf H+/amino acid symporter StAAP1. The Plant Journal, 33, 211–220.

    CAS  PubMed  Google Scholar 

  17. 17.

    Neelam, A., Marvier, A. C., Hall, J. L., & Williams, L. E. (1999). Functional characterization and expression analysis of the amino acid permease RcAAP3 from castor bean. Plant Physiology, 120, 1049–1056.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Schulze, W., Frommer, W. B., & Ward, J. M. (1999). Transporters for ammonium, amino acids and peptides are expressed in pitchers of the carnivorous plant Nepenthes. The Plant Journal, 17, 637–646.

    CAS  PubMed  Google Scholar 

  19. 19.

    Miranda, M., Borisjuk, L., Tewes, A., Heim, U., et al. (2001). Amino acid permeases in developing seeds of Viciafaba L.: Expression precedes storage protein synthesis and is regulated by amino acid supply. The Plant Journal, 28, 61–71.

    CAS  Google Scholar 

  20. 20.

    Cheng, L., Yuan, H. Y., Ren, R., Zhao, S. Q., et al. (2016). Genome-wide identification, classification, and expression analysis of amino acid transporter gene family in Glycine max. Frontiers in Plant Science, 7, 515.

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Akbar, M., Moghaddam, M., Valizadeh, M., & Kooshk, M. H. (2013). Genetic diversity of common bean genotypes as revealed by seed storage proteins and some agronomic traits. Plant Breeding and Seed Science.

    Article  Google Scholar 

  22. 22.

    Tan, Q., Grennan, A. K., Pe´lissier, H. C., Rentsch, D., et al. (2008). Characterization and expression of French bean amino acid transporter PvAAP1. Plant Science, 174, 348–356.

    CAS  Google Scholar 

  23. 23.

    Basak, J., Kundagrami, S., Ghose, T. K., & Pal, A. (2004). Development of Yellow Mosaic Virus (YMV) resistance linked DNA marker in Vignamungo from populations segregating for YMV-reaction. Molecular Breeding, 14, 375–383.

    CAS  Google Scholar 

  24. 24.

    Altschul, S. F., Madden, T. L., Schäffer, A. A., & Zhang, J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., et al. (2003). ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research, 31, 3784–3788.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Geourjon, C., & Deléage, G. (1995). SOPMA: Significant improvement in protein secondary structure prediction by consensus prediction from multiple alignments. Computer Applications in the Biosciences, 11, 681–684.

    CAS  PubMed  Google Scholar 

  27. 27.

    Zhang, Y. (2008). I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9, 40.

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26, 283–291.

    CAS  Google Scholar 

  29. 29.

    Bailey, T. L., Boden, M., Buske, F. A., Frith, M., et al. (2009). MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Research, 37, W202–W208.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., et al. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10, 845–858.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., & Wolfson, H. J. (2005). PatchDock and SymmDock: Servers for rigid and symmetric docking. Nucleic Acids Research, 33, W363–367.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Pradeep, N. V., Anupama, A., Vidyashree, K. G., & Lakshmi, P. (2012). In silico characterization of industrial important cellulases using computational tools. Advances in Life Science and Technology, 4, 2224–7181.

    Google Scholar 

  33. 33.

    Ertugrul, F., & Ibrahim, K. (2014). In silico sequence analysis and homology modeling of predicted beta-amylase 7-like protein in Brachypodium distachyon L. Journal of BioScience and Biotechnology, 3, 61–67.

    Google Scholar 

  34. 34.

    Singh, N., Upadhyay, S., Jaiswar, A., & Mishra, N. (2016). In silico analysis of protein. JSM Bioinformatics, Genomics and Proteomics, 1, 1007.

    Google Scholar 

  35. 35.

    Yadav, N. K., Sarika, Iquebal, M. A., & Akram, M. (2011). In-silico analysis and homology modelling of coat-protein of Mungbean Yellow Mosaic India Virus. Journal of Food Legumes, 24, 138–141.

    Google Scholar 

  36. 36.

    Nakashima, H., & Nishikawa, K. (1992). The amino acid composition is different between the cytoplasmic and extracellular sides in membrane proteins. FEBS Letters, 303, 141–146.

    CAS  PubMed  Google Scholar 

  37. 37.

    Weber, E., Chevallier, M. R., & Jund, R. (1988). Evolutionary relationship and secondary structure predictions in four transport proteins of Saccharomyces cerevisiae. Journal of Molecular Evolution, 27, 341–350.

    CAS  PubMed  Google Scholar 

  38. 38.

    Vandenbol, M., Jauniaux, J. C., & Grenson, M. (1989). Nucleotide sequence of the Saccharomyces cerevisiae PUT4 proline-permease-encoding gene: Similarities between CAN1, HIP1 and PUT4 permeases. Gene, 83, 153–159.

    CAS  PubMed  Google Scholar 

  39. 39.

    Reizer, J., Reizer, A., Saier, M. H., Jr., Finley, K., Kakuda, D., & Macleod, C. L. (1993). Mammalian integral membrane receptors are homologous to facilitators and antiporters of yeast, fungi, and eubacteria. Protein Science, 2, 20–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Geourjon, C., & Deléage, G. (1995). SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Computer Applications in the Biosciences, 11, 681–684.

    CAS  PubMed  Google Scholar 

  41. 41.

    Fitzkee, N. C., & Rose, G. D. (2004). Reassessing random-coil statistics in unfolded proteins. Proceedings of the National Academy of Sciences, 101, 12497–12502.

    CAS  Google Scholar 

  42. 42.

    Kumar, S., Tsai, C., & Nussinov, R. (2000). Factors enhancing protein thermostability. Protein Engineering, 13, 179–191.

    CAS  PubMed  Google Scholar 

  43. 43.

    Meng, X. Y., Zhang, H. X., Mezei, M., & Cui, M. (2011). Molecular docking: A powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design, 1(7), 146–157.

    Google Scholar 

  44. 44.

    McConkey, B. J., Sobolev, V., & Edelman, M. (2002). The performance of current methods in ligand-protein docking. Current Science, 83, 845–855.

    CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Jolly Basak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 683 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, N., Besra, A. & Basak, J. RETRACTED ARTICLE: Molecular Cloning of an Amino Acid Permease Gene and Structural Characterization of the Protein in Common Bean (Phaseolus vulgaris L.). Mol Biotechnol 62, 210–217 (2020).

Download citation


  • Amino acid permease
  • Phaseolus vulgaris
  • Homology modeling
  • Molecular docking