Molecular Biotechnology

, Volume 61, Issue 10, pp 715–724 | Cite as

Recent Developments of Reverse Micellar Techniques for Lysozyme, Bovine Serum Albumin, and Bromelain Extraction

  • Shir Reen Chia
  • Malcolm S. Y. Tang
  • Yin Hui Chow
  • Chien Wei Ooi
  • Krishnamoorthy Rambabu
  • Liandong Zhu
  • Pau Loke ShowEmail author


Biomolecules produced by living organisms can perform vast array of functions and play an important role in the cell. Important biomolecules such as lysozyme, bovine serum albumin (BSA), and bromelain are often studied by researchers due to their beneficial properties. The application of reverse micelles is an effective tool for protein separation from their sources due to the special system structure. Mechanisms of transferring biomolecules and factors that influence the extraction of biomolecules are reviewed in this paper. The enhancement of biomolecule extraction could be achieved depending on the properties of reverse micelles. This paper provides an overall review on lysozyme, BSA, and bromelain extraction by reverse micelle for various applications.


Bovine serum albumin Bromelain Lysozyme Protein separation Reverse micelles 



Sodium-di-2-ethylhexyl sulfosuccinate


Cibacron Blue F-3GA-sorbitan trioleate


Cetyldimethylammonium bromide


Cetyltrimethylammonium bromide


Octamethylene-α,ω-bis(dimethyldodecylammonium bromide)


Dioctyldimethyl ammonium chloride


Dodecyl trimethyl ammonium bromide


Di(N-dodecylglucosylammonium) succinate


Poly(oxyethylene)12nonylphenol ether


Di-(2,4,4-trimethylpentyl) sodium phosphinate


Di-(2,4,4-trimethylpentyl) sodium dithiophosphinate





This study is supported by the Fundamental Research Grant Scheme (Malaysia, FRGS/1/2015/SG05/UNIM/03/1), the Ministry of Science and Technology, (MOSTI 02-02-12-SF0256), the Prototype Research Grant Scheme (PRGS/2/2015/SG05/UNIM/03/1), and SATU Joint Research Scheme (RU018L-2016, RU018O-2016, and RU018C-2016). This work was also supported by Taiwan’s Ministry of Science and Technology under Grant Numbers 106-3113-E-006-011, 106-3113-E-006-004-CC2, 105-3113-E-006-003, 104-2221-E-006-227-MY3, and 103-2221-E-006-190-MY3.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they no competing interest.


  1. 1.
    Matzke, S., Creagh, A., Haynes, C., Prausnitz, J., & Blanch, H. (1992). Mechanisms of protein solubilization in reverse micelles. Biotechnology and Bioengineering, 40, 91–102.CrossRefGoogle Scholar
  2. 2.
    Luisi, P. L., & Laane, C. (1986). Solubilization of enzymes in apolar solvents via reverse micelles. Trends in Biotechnology, 4, 153–161.CrossRefGoogle Scholar
  3. 3.
    Zhang, T., Liu, H., & Chen, J. (2000). Affinity-based reversed micellar bovine serum albumin (BSA) extraction with unbound reactive dye. Separation Science and Technology, 35, 143–151.CrossRefGoogle Scholar
  4. 4.
    Poppenborg, L. H., Brillis, A. A., & Stuckey, D. C. (2000). The kinetic separation of protein mixtures using reverse micelles. Separation Science and Technology, 35, 843–858.CrossRefGoogle Scholar
  5. 5.
    Pandey, R., Prabhu, A. A., & Dasu, V. V. (2018). Purification of recombinant human interferon gamma from fermentation broth using reverse micellar extraction: A process optimization study. Separation Science and Technology, 53, 487–495.CrossRefGoogle Scholar
  6. 6.
    Noh, K.-H., & Imm, J.-Y. (2005). One-step separation of lysozyme by reverse micelles formed by the cationic surfactant, cetyldimethylammonium bromide. Food Chemistry, 93, 95–101.CrossRefGoogle Scholar
  7. 7.
    Yang, T. H., Yet, M. G., Hsu, C. K., & Chiang, B. H. (2001). Separation of γ-globulins from porcine plasma by reversed micellar extraction. Journal of Bioscience and Bioengineering, 92, 214–220.CrossRefGoogle Scholar
  8. 8.
    Aires-Barros, M. R., & Cabral, J. M. (1991). Selective separation and purification of two lipases from chromobacterium viscosum using AOT reversed micelles. Biotechnology and Bioengineering, 38, 1302–1307.CrossRefGoogle Scholar
  9. 9.
    Naito, N., Takeuchi, J., Naoe, K., Kawagoe, M., Imai, M., & Funato, M. (2009). Preparation and characterization of protein nanoparticle in reverse micellar system formed by sucrose fatty acid ester. Journal of Bioscience and Bioengineering, 108, S99–S100.CrossRefGoogle Scholar
  10. 10.
    Dumoulin, M., Johnson, R. J. K., Bellotti, V., & Dobson, C. M. (2007). Human lysozyme. In V. N. Uversky & A. Fink (Eds.), Protein misfolding, aggregation, and conformational diseases (pp. 285–308). New York: Springer.CrossRefGoogle Scholar
  11. 11.
    Paula, B. K., & Guchhait, N. (2011). A spectral deciphering of the binding interaction of an intramolecular charge transfer fluorescence probe with a cationic protein: Thermodynamic analysis of the binding phenomenon combined with blind docking study. Photochemical & Photobiological Sciences, 10, 980–991.CrossRefGoogle Scholar
  12. 12.
    George, S., Bhasker, S., Madhav, H., Nair, A., & Chinnamma, M. (2014). Functional characterization of recombinant bromelain of Ananas comosus expressed in a prokaryotic system. Molecular Biotechnology, 56, 166–174.CrossRefGoogle Scholar
  13. 13.
    Mohd-Setapar, S. H., Mohamad-Aziz, S. N., Harun, N. H., & Mohd-Azizi, C. Y. (2012). Review on the extraction of biomolecules by biosurfactant reverse micelles. APCBEE Procedia, 3, 78–83.CrossRefGoogle Scholar
  14. 14.
    Mohd-Setapar, S. H., Mohamad-Aziz, S. N., Chuong, C. S., Che Yunus, M. A., Ahmad Zaini, M. A., & Kamaruddin, M. J. (2014). A review of mixed reverse micelle system for antibiotic recovery. Chemical Engineering Communications, 201, 1664–1685.CrossRefGoogle Scholar
  15. 15.
    Naoe, K., Noda, K., Kawagoe, M., & Imai, M. (2004). Higher order structure of proteins solubilized in AOT reverse micelles. Colloids Surfaces B: Biointerfaces, 38, 179–185.CrossRefGoogle Scholar
  16. 16.
    Sakono, M., Goto, M., & Furusaki, S. (2000). Refolding of cytochrome c using reversed micelles. Journal of Bioscience and Bioengineering, 89, 458–462.CrossRefGoogle Scholar
  17. 17.
    Michizoe, J., Ichinose, H., Kamiya, N., Maruyama, T., & Goto, M. (2005). Functionalization of the cytochrome P450cam monooxygenase system in the cell-like aqueous compartments of water-in-oil emulsions. Journal of Bioscience and Bioengineering, 99, 12–17.CrossRefGoogle Scholar
  18. 18.
    Nandini, K. E., & Rastogi, N. K. (2009). Reverse micellar extraction for downstream processing of lipase: Effect of various parameters on extraction. Process Biochemistry, 44, 1172–1178.CrossRefGoogle Scholar
  19. 19.
    Mazzola, P. G., Lopes, A. M., Hasmann, F. A., Jozala, A. F., Penna, T. C., Magalhaes, P. O., et al. (2008). Liquid-liquid extraction of biomolecules:an overview and update of the main techniques. Journal of Chemical Technology and Biotechnology, 83, 143–157.CrossRefGoogle Scholar
  20. 20.
    Michizoe, J., Uchimura, Y., Maruyama, T., Kamiya, N., & Goto, M. (2003). Control of water content by reverse micellar solutions for peroxidase catalysis in a water-immiscible organic solvent. Journal of Bioscience and Bioengineering, 95, 425–427.CrossRefGoogle Scholar
  21. 21.
    Kilikian, B. V., Bastazin, M. R., Minami, N. M., Goncalves, E. M. R., & Junior, A. P. (1999). Liquid-liquid extraction by reversed micelles in biotechnological processes. Brazilian Journal of Chemical Engineering, 17, 29–38.CrossRefGoogle Scholar
  22. 22.
    Garcia-Salas, P., Morales-Soto, A., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2010). Phenolic-compound-extraction systems for fruit and vegetable samples. Molecules, 15, 8813–8826.CrossRefGoogle Scholar
  23. 23.
    Hentsch, M., Menoud, P., Steiner, L., Flaschel, E., & Renken, A. (1992). Optimization of the surfactant (AOT) concentration in a reverse micellar extraction process. Biotechnology Techniques, 6, 359–364.CrossRefGoogle Scholar
  24. 24.
    Va, P., & Fe, C. (1988). The chemistry of lysozyme and its use as a food preservative and a pharmaceutical. Critical Reviews in Food Science and Nutrition, 4, 359–395.Google Scholar
  25. 25.
    Cegielska-Radziejewska, R., Lesnierowski, G., & Kijowski, J. (2008). Properties and application of egg white lysozyme and its modified preparations—A review. Polish Journal of Food and Nutrition Sciences, 58, 5–10.Google Scholar
  26. 26.
    Elkordy, A. A., Forbes, R. T., & Barry, B. W. (2004). Stability of crystallised and spray-dried lysozyme. International Journal of Pharmaceutics, 278, 209–219.CrossRefGoogle Scholar
  27. 27.
    Tzeng, Y.-P., Shen, C.-W., & Yu, T. (2008). Liquid–liquid extraction of lysozyme using a dye-modified ionic liquid. Journal of Chromatography A, 1193, 1–6.CrossRefGoogle Scholar
  28. 28.
    Owen, R. O., & Chase, H. A. (1997). Direct purification of lysozyme using continuous counter-current expanded bed adsorption. Journal of Chromatography A, 757, 41–49.CrossRefGoogle Scholar
  29. 29.
    Boland, M. J. (2002). Aqueous two-phase extraction and purification of animal proteins. Molecular Biotechnology, 20, 85–93.CrossRefGoogle Scholar
  30. 30.
    Sun, Y., Bai, S., Gu, L., Tong, X.-D., Ichikawa, S., & Furusaki, S. (1999). Effect of hexanol as a cosolvent on partitioning and mass transfer rate of protein extraction using reversed micelles of CB-modified lecithin. Biochemical Engineering Journal, 3, 9–16.CrossRefGoogle Scholar
  31. 31.
    Shin, Y. O., & Vera, J. H. (2004). Reverse micellar extraction of lysozyme using two dialkyl sodium phosphinates. Canadian Journal of Chemical Engineering, 82, 349–357.CrossRefGoogle Scholar
  32. 32.
    Mohd-Setapar, S., Mohamad-Aziz, S., & Joannes, C. (2012). Reverse micelle liquid-liquid extraction of bovine serum albumin and lysozyme. Jurnal Teknologi, 58, 7–11.CrossRefGoogle Scholar
  33. 33.
    Kinugasa, T., Kondo, A., Mouri, E., Ichikawa, S., Nakagawa, S., Nishii, Y., et al. (2003). Effects of ion species in aqueous phase on protein extraction into reversed micellar solution. Separation and Purification Technology, 31, 251–259.CrossRefGoogle Scholar
  34. 34.
    Zhang, H., Lu, J., & Han, B. (2001). Precipitation of lysozyme solubilized in reverse micelles by dissolved CO2. The Journal of Supercritical Fluids, 20, 65–71.CrossRefGoogle Scholar
  35. 35.
    Liu, Y., Dong, X.-Y., & Sun, Y. (2005). Characterization of reversed micelles of Cibacron Blue F-3GA modified Span 85 for protein solubilization. Journal of Colloid and Interface Science, 290, 259–266.CrossRefGoogle Scholar
  36. 36.
    Valdez, D., Le Huérou, J.-Y., Gindre, M., Urbach, W., & Waks, M. (2001). Hydration and protein folding in water and in reverse micelles: Compressibility and volume changes. Biophysical Journal, 80, 2751–2760.CrossRefGoogle Scholar
  37. 37.
    Jiang, G., Thanoo, B., & DeLuca, P. P. (2002). Effect of osmotic pressure in the solvent extraction phase on BSA release profile from PLGA microspheres. Pharmaceutical Development and Technology, 7, 391–399.CrossRefGoogle Scholar
  38. 38.
    Chen, L., Dong, J., & Guo, X. (2017). Extraction of bovine serum albumin with reverse micelles from glucosylammonium and lactosylammonium surfactants. Process Biochemistry, 60, 108–114.CrossRefGoogle Scholar
  39. 39.
    Hemavathi, A. B., Hebbar, H. U., & Raghavarao, K. S. (2007). Reverse micellar extraction of bromelain from Ananas comosus L. Merryl. Journal of Chemical Technology and Biotechnology, 82, 985–992.CrossRefGoogle Scholar
  40. 40.
    Hebbar, H. U., & Raghavarao, K. (2007). Extraction of bovine serum albumin using nanoparticulate reverse micelles. Process Biochemistry, 42, 1602–1608.CrossRefGoogle Scholar
  41. 41.
    Pawar, S. S., Regupathi, I., & Prasanna, B. (2017). Reverse micellar partitioning of Bovine Serum Albumin with novel system. Resource-Efficient Technologies, 3, 491–494.CrossRefGoogle Scholar
  42. 42.
    Sun, Q., Yang, Y., Lu, Y., & Lu, W. (2011). Extraction of bovine serum albumin using reverse micelles formed by hexadecyl trimethyl ammonium chloride. Applied Biochemistry and Biotechnology, 163, 744–755.CrossRefGoogle Scholar
  43. 43.
    Dasgupta, S., Bandyopadhyay, A., & Bose, S. (2009). Reverse micelle-mediated synthesis of calcium phosphate nanocarriers for controlled release of bovine serum albumin. Acta Biomaterialia, 5, 3112–3121.CrossRefGoogle Scholar
  44. 44.
    Manzoor, Z., Nawaz, A., Mukhtar, H., & Haq, I. (2016). Bromelain: Methods of extraction, purification and therapeutic applications. Brazilian Archives of Biology and Technology. Scholar
  45. 45.
    Rathnavelu, V., Alitheen, N. B., Sohila, S., Kanagesan, S., & Ramesh, R. (2016). Potential role of bromelain in clinical and therapeutic applications. Biomedical reports, 5, 283–288.CrossRefGoogle Scholar
  46. 46.
    Zhou, Z., Wang, L., Xu, M., Yin, L., Yang, F., Hui, S., et al. (2017). Fruit bromelain ameliorates rat constipation induced by loperamide. RSC Advances, 7, 45252–45259.CrossRefGoogle Scholar
  47. 47.
    Khan, A. A. M., Saim, N., & Hamid, R. D. (2017). Optimisation of pressurised liquid extraction of bioactive compounds from Ananas comosus (Pineapple) fruit. Pertanika Journal of Science and Technology, 25, 175–182.Google Scholar
  48. 48.
    Yin, L., Sun, C., Han, X., Xu, L., Xu, Y., Qi, Y., et al. (2011). Preparative purification of bromelain (EC 3.4. 22.33) from pineapple fruit by high-speed counter-current chromatography using a reverse-micelle solvent system. Food Chemistry, 129, 925–932.CrossRefGoogle Scholar
  49. 49.
    Hebbar, H. U., Sumana, B., & Raghavarao, K. (2008). Use of reverse micellar systems for the extraction and purification of bromelain from pineapple wastes. Bioresource Technology, 99, 4896–4902.CrossRefGoogle Scholar
  50. 50.
    Wan, J., Guo, J., Miao, Z., & Guo, X. (2016). Reverse micellar extraction of bromelain from pineapple peel—Effect of surfactant structure. Food Chemistry, 197, 450–456.CrossRefGoogle Scholar
  51. 51.
    Kumar, S., Hemavathi, A., & Hebbar, H. U. (2011). Affinity based reverse micellar extraction and purification of bromelain from pineapple (Ananas comosus L. Merryl) waste. Process Biochemistry, 46, 1216–1220.CrossRefGoogle Scholar
  52. 52.
    Shin, Y.-O., Weber, M. E., & Vera, J. H. (2003). Effect of salt and volume ratio on the reverse micellar extraction of lysozyme using DODMAC. Fluid Phase Equilibria, 207, 155–165.CrossRefGoogle Scholar
  53. 53.
    Liu, Y., Dong, X.-Y., & Sun, Y. (2007). Protein separation by affinity extraction with reversed micelles of Span 85 modified with Cibacron Blue F3G-A. Separation and Purification Technology, 53, 289–295.CrossRefGoogle Scholar
  54. 54.
    Dong, X.-Y., Wu, X.-Y., & Sun, Y. (2006). Refolding of denatured lysozyme assisted by artificial chaperones in reverse micelles. Biochemical Engineering Journal, 31, 92–95.CrossRefGoogle Scholar
  55. 55.
    Xiao, J., Cai, J., & Guo, X. (2013). Reverse micellar extraction of bovine serum albumin—A comparison between the effects of gemini surfactant and its corresponding monomeric surfactant. Food Chemistry, 136, 1063–1069.CrossRefGoogle Scholar
  56. 56.
    Chaurasiya, R. S., & Hebbar, H. U. (2013). Extraction of bromelain from pineapple core and purification by RME and precipitation methods. Separation and Purification Technology, 111, 90–97.CrossRefGoogle Scholar
  57. 57.
    Hebbar, U. H., Sumana, B., Hemavathi, A., & Raghavarao, K. (2012). Separation and purification of bromelain by reverse micellar extraction coupled ultrafiltration and comparative studies with other methods. Food and Bioprocess Technology, 5, 1010–1018.CrossRefGoogle Scholar
  58. 58.
    Chaurasiya, R. S., Sakhare, P., Bhaskar, N., & Hebbar, H. U. (2015). Efficacy of reverse micellar extracted fruit bromelain in meat tenderization. Journal of Food Science and Technology, 52, 3870–3880.Google Scholar
  59. 59.
    Dhaneshwar, A. D., Chaurasiya, R. S., & Hebbar, H. U. (2014). Process optimization for reverse micellar extraction of stem bromelain with a focus on back extraction. Biotechnology Progress, 30, 845–855.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Shir Reen Chia
    • 1
  • Malcolm S. Y. Tang
    • 2
    • 3
  • Yin Hui Chow
    • 4
  • Chien Wei Ooi
    • 5
  • Krishnamoorthy Rambabu
    • 6
  • Liandong Zhu
    • 7
  • Pau Loke Show
    • 1
    Email author
  1. 1.Department of Chemical and Environmental Engineering, Faculty of Science and EngineeringThe University of Nottingham MalaysiaSemenyihMalaysia
  2. 2.Faculty of Science, Institute of Biological SciencesUniversity of MalayaKuala LumpurMalaysia
  3. 3.Department of Physics, Faculty of Science, Low Dimensional Material Research CentreUniversity of MalayaKuala LumpurMalaysia
  4. 4.School of EngineeringTaylor’s UniversitySubang JayaMalaysia
  5. 5.Chemical Engineering, School of EngineeringMonash UniversityBandar SunwayMalaysia
  6. 6.Department of Chemical Engineering, School of Civil and Chemical EngineeringVellore Institute of Technology UniversityVelloreIndia
  7. 7.School of Resource and Environmental SciencesWuhan UniversityWuhanPeople’s Republic of China

Personalised recommendations