Skip to main content
Log in

Building Bridges Between Structural and Network-Based Systems Biology

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The integration of structural and network-based systems biology is paramount for the improved understanding of how the proteins interact to modulate the behavior of complex biological systems. This review presents the current literature on the computational studies that combine these two scientific fields focusing on two main approaches: network-based analysis of the structure and dynamics of proteins and the in silico reconstruction of protein–protein interaction (PPI) networks or expansion of existed protein interactomes driven by structural annotations. Last, to enrich the current knowledge of the topological properties of the protein structure networks and evaluate the capacity of the public structural annotations of protein domains to predict novel PPIs, further computational analyses, missing so far from the literature, were performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aloy, P., & Russell, R. B. (2006). Structural systems biology: Modelling protein interactions. Nature Reviews Molecular Cell Biology, 7(3), 188–197. https://doi.org/10.1038/nrm1859.

    Article  CAS  PubMed  Google Scholar 

  2. Amaral, L. A., Scala, A., Barthelemy, M., & Stanley, H. E. (2000). Classes of small-world networks. Proceedings of the National Academy of Sciences of the United States of America, 97(21), 11149–11152. https://doi.org/10.1073/pnas.200327197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Amitai, G., Shemesh, A., Sitbon, E., Shklar, M., Netanely, D., Venger, I., & Pietrokovski, S. (2004). Network analysis of protein structures identifies functional residues. Journal of Molecular Biology, 344(4), 1135–1146. https://doi.org/10.1016/j.jmb.2004.10.055.

    Article  CAS  PubMed  Google Scholar 

  4. Andreini, C., Banci, L., Bertini, I., Elmi, S., & Rosato, A. (2007). Non-heme iron through the three domains of life. Proteins: Structure, Function, and Bioinformatics, 67(2), 317–324. https://doi.org/10.1002/prot.21324.

    Article  CAS  Google Scholar 

  5. Andreini, C., Banci, L., Bertini, I., & Rosato, A. (2006). Zinc through the three domains of life. Journal of Proteome Research, 5(11), 3173–3178. https://doi.org/10.1021/pr0603699.

    Article  CAS  PubMed  Google Scholar 

  6. Andreini, C., Banci, L., Bertini, I., & Rosato, A. (2008). Occurrence of copper proteins through the three domains of life: A bioinformatic approach. Journal of Proteome Research, 7(1), 209–216. https://doi.org/10.1021/pr070480u.

    Article  CAS  PubMed  Google Scholar 

  7. Atilgan, A. R., Akan, P., & Baysal, C. (2004). Small-world communication of residues and significance for protein dynamics. Biophysical Journal, 86(1 Pt 1), 85–91. https://doi.org/10.1016/S0006-3495(04)74086-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Atilgan, A. R., Durell, S. R., Jernigan, R. L., Demirel, M. C., Keskin, O., & Bahar, I. (2001). Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophysical Journal, 80(1), 505–515. https://doi.org/10.1016/s0006-3495(01)76033-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Atilgan, A. R., Turgut, D., & Atilgan, C. (2007). Screened nonbonded interactions in native proteins manipulate optimal paths for robust residue communication. Biophysical Journal, 92(9), 3052–3062. https://doi.org/10.1529/biophysj.106.099440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Barabasi, A. L., & Oltvai, Z. N. (2004). Network biology: Understanding the cell’s functional organization. Nature Reviews Genetics, 5(2), 101–113. https://doi.org/10.1038/nrg1272.

    Article  CAS  PubMed  Google Scholar 

  11. Bateman, A., Coin, L., Durbin, R., Finn, R. D., Hollich, V., Griffiths-Jones, S.,…, Eddy, S. R. (2004). The Pfam protein families database. Nucleic Acids Research, 32(Database issue), D138–D141. https://doi.org/10.1093/nar/gkh121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Beltrao, P., Kiel, C., & Serrano, L. (2007). Structures in systems biology. Current Opinion in Structural Biology, 17(3), 378–384. https://doi.org/10.1016/j.sbi.2007.05.005.

    Article  CAS  PubMed  Google Scholar 

  13. Bertoni, M., Kiefer, F., Biasini, M., Bordoli, L., & Schwede, T. (2017). Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology. Scientific Reports, 7(1), 10480. https://doi.org/10.1038/s41598-017-09654-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Birkou, M., Chasapis, C. T., Marousis, K. D., Loutsidou, A. K., Bentrop, D., Lelli, M.,…, Spyroulias, G. A. (2017). A residue specific insight into the Arkadia E3 ubiquitin ligase activity and conformational plasticity. Journal of Molecular Biology, 429(15), 2373–2386. https://doi.org/10.1016/j.jmb.2017.06.012.

    Article  CAS  PubMed  Google Scholar 

  15. Bode, C., Kovacs, I. A., Szalay, M. S., Palotai, R., Korcsmaros, T., & Csermely, P. (2007). Network analysis of protein dynamics. FEBS Letters, 581(15), 2776–2782. https://doi.org/10.1016/j.febslet.2007.05.021.

    Article  CAS  PubMed  Google Scholar 

  16. Bonacich, P. (1972). Factoring and weighting approaches to status scores and clique identification. The Journal of Mathematical Sociology, 2(1), 113–120. https://doi.org/10.1080/0022250x.1972.9989806.

    Article  Google Scholar 

  17. Bonetta, L. (2010). Protein-protein interactions: Interactome under construction. Nature, 468(7325), 851–854. https://doi.org/10.1038/468851a.

    Article  CAS  PubMed  Google Scholar 

  18. Carroni, M., & Saibil, H. R. (2016). Cryo electron microscopy to determine the structure of macromolecular complexes. Methods, 95, 78–85. https://doi.org/10.1016/j.ymeth.2015.11.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chakrabarti, P., & Janin, J. (2002). Dissecting protein-protein recognition sites. Proteins, 47(3), 334–343.

    Article  CAS  PubMed  Google Scholar 

  20. Chakrabarty, B., & Parekh, N. (2016). NAPS: Network analysis of protein structures. Nucleic Acids Research, 44(W1), W375–W382. https://doi.org/10.1093/nar/gkw383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chasapis, C. T. (2018). Hierarchical core decomposition of RING structure as a method to capture novel functional residues within RING-type E3 ligases: A structural systems biology approach. Computers in Biology and Medicine, 100, 86–91. https://doi.org/10.1016/j.compbiomed.2018.06.033.

    Article  CAS  PubMed  Google Scholar 

  22. Chasapis, C. T. (2018). Interactions between metal binding viral proteins and human targets as revealed by network-based bioinformatics. Journal of Inorganic Biochemistry, 186, 157–161. https://doi.org/10.1016/j.jinorgbio.2018.06.012.

    Article  CAS  PubMed  Google Scholar 

  23. Chasapis, C. T. (2019). Preliminary results from structural systems biology approach in Tetrahymena thermophila reveal novel perspectives for this toxicological model. Archives of Microbiology, 201(1), 51–59. https://doi.org/10.1007/s00203-018-1571-6.

    Article  CAS  PubMed  Google Scholar 

  24. Chasapis, C. T. (2018). Shared gene-network signatures between the human heavy metal proteome and neurological disorders and cancer types. Metallomics, 10(11), 1678–1686. https://doi.org/10.1039/c8mt00271a.

    Article  CAS  PubMed  Google Scholar 

  25. Chasapis, C. T., Andreini, C., Georgiopolou, A. K., Stefanidou, M. E., & Vlamis-Gardikas, A. (2017). Identification of the zinc, copper and cadmium metalloproteome of the protozoon Tetrahymena thermophila by systematic bioinformatics. Archives of Microbiology, 199(8), 1141–1149. https://doi.org/10.1007/s00203-017-1385-y.

    Article  CAS  PubMed  Google Scholar 

  26. Chasapis, C. T., Kandias, N. G., Episkopou, V., Bentrop, D., & Spyroulias, G. A. (2012). NMR-based insights into the conformational and interaction properties of Arkadia RING-H2 E3 Ub ligase. Proteins, 80(5), 1484–1489. https://doi.org/10.1002/prot.24048.

    Article  CAS  PubMed  Google Scholar 

  27. Chasapis, C. T., Loutsidou, A. K., Orkoula, M. G., & Spyroulias, G. A. (2010). Zinc binding properties of engineered RING finger domain of Arkadia E3 ubiquitin ligase. Bioinorganic Chemistry and Applications, 2010, 1–7. https://doi.org/10.1155/2010/323152.

    Article  CAS  Google Scholar 

  28. Chatr-aryamontri, A., Oughtred, R., Boucher, L., Rust, J., Chang, C., Kolas, N. K.,…, Tyers, M. (2017). The BioGRID interaction database: 2017 update. Nucleic Acids Research, 45(D1), D369–D379. https://doi.org/10.1093/nar/gkw1102.

    Article  CAS  PubMed  Google Scholar 

  29. Cusack, M. P., Thibert, B., Bredesen, D. E., & Del Rio, G. (2007). Efficient identification of critical residues based only on protein structure by network analysis. PLoS ONE, 2(5), e421. https://doi.org/10.1371/journal.pone.0000421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dalkas, G. A., Chasapis, C. T., Gkazonis, P. V., Bentrop, D., & Spyroulias, G. A. (2010). Conformational dynamics of the anthrax lethal factor catalytic center. Biochemistry, 49(51), 10767–10769. https://doi.org/10.1021/bi1017792.

    Article  CAS  PubMed  Google Scholar 

  31. Das, A. A., Sharma, O. P., Kumar, M. S., Krishna, R., & Mathur, P. P. (2013). PepBind: A comprehensive database and computational tool for analysis of protein-peptide interactions. Genomics Proteomics Bioinformatics, 11(4), 241–246. https://doi.org/10.1016/j.gpb.2013.03.002.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Davis, F. P., & Sali, A. (2005). PIBASE: A comprehensive database of structurally defined protein interfaces. Bioinformatics, 21(9), 1901–1907. https://doi.org/10.1093/bioinformatics/bti277.

    Article  CAS  PubMed  Google Scholar 

  33. De Las Rivas, J., & Fontanillo, C. (2010). Protein-protein interactions essentials: Key concepts to building and analyzing interactome networks. PLOS Computational Biology, 6(6), e1000807. https://doi.org/10.1371/journal.pcbi.1000807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. del Sol, A., Fujihashi, H., & O’Meara, P. (2005). Topology of small-world networks of protein-protein complex structures. Bioinformatics, 21(8), 1311–1315. https://doi.org/10.1093/bioinformatics/bti167.

    Article  CAS  PubMed  Google Scholar 

  35. Di Paola, L., De Ruvo, M., Paci, P., Santoni, D., & Giuliani, A. (2013). Protein contact networks: An emerging paradigm in chemistry. Chemical Reviews, 113(3), 1598–1613. https://doi.org/10.1021/cr3002356.

    Article  CAS  PubMed  Google Scholar 

  36. Di Ventura, B., Lemerle, C., Michalodimitrakis, K., & Serrano, L. (2006). From in vivo to in silico biology and back. Nature, 443(7111), 527–533. https://doi.org/10.1038/nature05127.

    Article  CAS  PubMed  Google Scholar 

  37. Encinar, J. A., Fernandez-Ballester, G., Sanchez, I. E., Hurtado-Gomez, E., Stricher, F., Beltrao, P., & Serrano, L. (2009). ADAN: A database for prediction of protein-protein interaction of modular domains mediated by linear motifs. Bioinformatics, 25(18), 2418–2424. https://doi.org/10.1093/bioinformatics/btp424.

    Article  CAS  PubMed  Google Scholar 

  38. Finn, R. D., Clements, J., & Eddy, S. R. (2011). HMMER web server: Interactive sequence similarity searching. Nucleic Acids Research, 39(Web Server issue), W29–W37. https://doi.org/10.1093/nar/gkr367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Finn, R. D., Coggill, P., Eberhardt, R. Y., Eddy, S. R., Mistry, J., Mitchell, A. L.,…, Bateman, A. (2016). The Pfam protein families database: Towards a more sustainable future. Nucleic Acids Research, 44(D1), D279–D285. https://doi.org/10.1093/nar/gkv1344.

    Article  CAS  PubMed  Google Scholar 

  40. Finn, R. D., Marshall, M., & Bateman, A. (2005). iPfam: Visualization of protein-protein interactions in PDB at domain and amino acid resolutions. Bioinformatics, 21(3), 410–412. https://doi.org/10.1093/bioinformatics/bti011.

    Article  CAS  PubMed  Google Scholar 

  41. Finn, R. D., Tate, J., Mistry, J., Coggill, P. C., Sammut, S. J., Hotz, H. R.,…, Bateman, A. (2008). The Pfam protein families database. Nucleic Acids Research, 36(Database issue), D281–D288. https://doi.org/10.1093/nar/gkm960.

    Article  CAS  PubMed  Google Scholar 

  42. Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215–239. https://doi.org/10.1016/0378-8733(78)90021-7.

    Article  Google Scholar 

  43. Frenkel-Morgenstern, M., Gorohovski, A., Tagore, S., Sekar, V., Vazquez, M., & Valencia, A. (2017). ChiPPI: A novel method for mapping chimeric protein-protein interactions uncovers selection principles of protein fusion events in cancer. Nucleic Acids Research, 45(12), 7094–7105. https://doi.org/10.1093/nar/gkx423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Galiakhmetov, A. R., Kovrigina, E. A., Xia, C., Kim, J. P., & Kovrigin, E. L. (2018). Application of methyl-TROSY to a large paramagnetic membrane protein without perdeuteration: (13)C-MMTS-labeled NADPH-cytochrome P450 oxidoreductase. Journal of Biomolecular NMR, 70(1), 21–31. https://doi.org/10.1007/s10858-017-0152-3.

    Article  CAS  PubMed  Google Scholar 

  45. Gavin, A. C., Maeda, K., & Kuhner, S. (2011). Recent advances in charting protein-protein interaction: Mass spectrometry-based approaches. Current Opinion in Biotechnology, 22(1), 42–49. https://doi.org/10.1016/j.copbio.2010.09.007.

    Article  CAS  PubMed  Google Scholar 

  46. Gkazonis, P. V., Dalkas, G. A., Chasapis, C. T., Vlamis-Gardikas, A., Bentrop, D., & Spyroulias, G. A. (2010). Purification and biophysical characterization of the core protease domain of anthrax lethal factor. Biochemical and Biophysical Research Communications, 396(3), 643–647. https://doi.org/10.1016/j.bbrc.2010.04.144.

    Article  CAS  PubMed  Google Scholar 

  47. Gong, S., Yoon, G., Jang, I., Bolser, D., Dafas, P., Schroeder, M.,…, Bhak, J. (2005). PSIbase: A database of protein structural interactome map (PSIMAP). Bioinformatics, 21(10), 2541–2543. https://doi.org/10.1093/bioinformatics/bti366.

    Article  CAS  PubMed  Google Scholar 

  48. Greene, L. H. (2012). Protein structure networks. Brief Functional Genomics, 11(6), 469–478. https://doi.org/10.1093/bfgp/els039.

    Article  Google Scholar 

  49. Grewal, R. K., & Roy, S. (2015). Modeling proteins as residue interaction networks. Protein and Peptide Letters, 22(10), 923–933. https://doi.org/10.2174/0929866522666150728115552.

    Article  CAS  PubMed  Google Scholar 

  50. Hanzawa, H., de Ruwe, M. J., Albert, T. K., van Der Vliet, P. C., Timmers, H. T., & Boelens, R. (2001). The structure of the C4C4 ring finger of human NOT4 reveals features distinct from those of C4HC4 RING fingers. Journal of Biological Chemistry, 276(13), 10185–10190. https://doi.org/10.1074/jbc.M009298200.

    Article  CAS  PubMed  Google Scholar 

  51. Hollup, S. M., Salensminde, G., & Reuter, N. (2005). WEBnm@: A web application for normal mode analyses of proteins. BMC Bioinformatics, 6, 52. https://doi.org/10.1186/1471-2105-6-52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Janjic, V., & Przulj, N. (2012). The core Diseasome. Molecular BioSystems, 8(10), 2614–2625. https://doi.org/10.1039/c2mb25230a.

    Article  CAS  PubMed  Google Scholar 

  53. Jefferson, E. R., Walsh, T. P., Roberts, T. J., & Barton, G. J. (2007). SNAPPI-DB: A database and API of Structures, iNterfaces and alignments for protein-protein interactions. Nucleic Acids Research, 35(Database issue), D580–D589. https://doi.org/10.1093/nar/gkl836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Johansson, H., Jensen, M. R., Gesmar, H., Meier, S., Vinther, J. M., Keeler, C.,…, Led, J. J. (2014). Specific and nonspecific interactions in ultraweak protein-protein associations revealed by solvent paramagnetic relaxation enhancements. Journal of the American Chemical Society, 136(29), 10277–10286. https://doi.org/10.1021/ja503546j.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kandias, N. G., Chasapis, C. T., Bentrop, D., Episkopou, V., & Spyroulias, G. A. (2009). High yield expression and NMR characterization of Arkadia E3 ubiquitin ligase RING-H2 finger domain. Biochemical and Biophysical Research Communications, 378(3), 498–502. https://doi.org/10.1016/j.bbrc.2008.11.055.

    Article  CAS  PubMed  Google Scholar 

  56. Karimova, G., Pidoux, J., Ullmann, A., & Ladant, D. (1998). A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proceedings of the National Academy of Sciences of the United States of America, 95(10), 5752–5756. https://doi.org/10.1073/pnas.95.10.5752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kastritis, P. L., & Bonvin, A. M. (2010). Are scoring functions in protein-protein docking ready to predict interactomes? Clues from a novel binding affinity benchmark. Journal of Proteome Research, 9(5), 2216–2225. https://doi.org/10.1021/pr9009854.

    Article  CAS  PubMed  Google Scholar 

  58. Krebs, W. G., Alexandrov, V., Wilson, C. A., Echols, N., Yu, H., & Gerstein, M. (2002). Normal mode analysis of macromolecular motions in a database framework: Developing mode concentration as a useful classifying statistic. Proteins, 48(4), 682–695. https://doi.org/10.1002/prot.10168.

    Article  CAS  PubMed  Google Scholar 

  59. La, D., Kong, M., Hoffman, W., Choi, Y. I., & Kihara, D. (2013). Predicting permanent and transient protein-protein interfaces. Proteins, 81(5), 805–818. https://doi.org/10.1002/prot.24235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li, H., Chang, Y. Y., Lee, J. Y., Bahar, I., & Yang, L. W. (2017). DynOmics: Dynamics of structural proteome and beyond. Nucleic Acids Research, 45(W1), W374–W380. https://doi.org/10.1093/nar/gkx385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li, H., Chang, Y. Y., Yang, L. W., & Bahar, I. (2016). iGNM 2.0: The Gaussian network model database for biomolecular structural dynamics. Nucleic Acids Research, 44(D1), D415–D422. https://doi.org/10.1093/nar/gkv1236.

    Article  CAS  PubMed  Google Scholar 

  62. Li, M., Simonetti, F. L., Goncearenco, A., & Panchenko, A. R. (2016). MutaBind estimates and interprets the effects of sequence variants on protein-protein interactions. Nucleic Acids Research, 44(W1), W494–W501. https://doi.org/10.1093/nar/gkw374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lindahl, E., Azuara, C., Koehl, P., & Delarue, M. (2006). NOMAD-Ref: Visualization, deformation and refinement of macromolecular structures based on all-atom normal mode analysis. Nucleic Acids Research, 34, W52–W56. https://doi.org/10.1093/nar/gkl082. (Web Server issue).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lopez-Blanco, J. R., Garzon, J. I., & Chacon, P. (2011). iMod: Multipurpose normal mode analysis in internal coordinates. Bioinformatics, 27(20), 2843–2850. https://doi.org/10.1093/bioinformatics/btr497.

    Article  CAS  PubMed  Google Scholar 

  65. Memisevic, V., Wallqvist, A., & Reifman, J. (2013). Reconstituting protein interaction networks using parameter-dependent domain-domain interactions. BMC Bioinformatics, 14, 154. https://doi.org/10.1186/1471-2105-14-154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mosca, R., Céol, A., Stein, A., Olivella, R., & Aloy, P. (2014). 3did: A catalog of domain-based interactions of known three-dimensional structure. Nucleic Acids Research, 42(D1), D374–D379. https://doi.org/10.1093/nar/gkt887.

    Article  CAS  PubMed  Google Scholar 

  67. Oltvai, Z. N., & Barabasi, A. L. (2002). Systems biology. Life’s complexity pyramid. Science, 298(5594), 763–764. https://doi.org/10.1126/science.1078563.

    Article  CAS  PubMed  Google Scholar 

  68. Paola, L. D., Paci, P., Santoni, D., Ruvo, M. D., & Giuliani, A. (2012). Proteins as sponges: A statistical journey along protein structure organization principles. Journal of Chemical Information and Modeling, 52(2), 474–482. https://doi.org/10.1021/ci2005127.

    Article  CAS  PubMed  Google Scholar 

  69. Patra, S. M., & Vishveshwara, S. (2000). Backbone cluster identification in proteins by a graph theoretical method. Biophysical Chemistry, 84(1), 13–25. https://doi.org/10.1016/S0301-4622(99)00134-9.

    Article  CAS  PubMed  Google Scholar 

  70. Peana, M., Chasapis, C. T., Simula, G., Medici, S., & Zoroddu, M. A. (2018). A Model for Manganese interaction with Deinococcus radiodurans proteome network involved in ROS response and defense. Journal of Trace Elements in Medicine and Biology, 50, 465–473. https://doi.org/10.1016/j.jtemb.2018.02.001.

    Article  CAS  PubMed  Google Scholar 

  71. Pugalenthi, G. (2006). iMOTdb—A comprehensive collection of spatially interacting motifs in proteins. Nucleic Acids Research, 34(90001), D285–D286. https://doi.org/10.1093/nar/gkj125.

    Article  CAS  PubMed  Google Scholar 

  72. Putignano, V., Rosato, A., Banci, L., & Andreini, C. (2018). MetalPDB in 2018: A database of metal sites in biological macromolecular structures. Nucleic Acids Research, 46(D1), D459–D464. https://doi.org/10.1093/nar/gkx989.

    Article  CAS  PubMed  Google Scholar 

  73. Riley, R., Lee, C., Sabatti, C., & Eisenberg, D. (2005). Inferring protein domain interactions from databases of interacting proteins. Genome Biology, 6(10), R89. https://doi.org/10.1186/gb-2005-6-10-r89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Schymkowitz, J., Borg, J., Stricher, F., Nys, R., Rousseau, F., & Serrano, L. (2005). The FoldX web server: An online force field. Nucleic Acids Research, 33, W382–W388. https://doi.org/10.1093/nar/gki387. (Web Server issue).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Scott, J. D., & Pawson, T. (2009). Cell signaling in space and time: Where proteins come together and when they’re apart. Science, 326(5957), 1220–1224. https://doi.org/10.1126/science.1175668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shannon, P. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504. https://doi.org/10.1101/gr.1239303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shoemaker, B. A., Panchenko, A. R., & Bryant, S. H. (2006). Finding biologically relevant protein domain interactions: Conserved binding mode analysis. Protein Science, 15(2), 352–361. https://doi.org/10.1110/ps.051760806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Stefanidou, M., Loutsidou, A. C., Chasapis, C. T., & Spiliopoulou, C. A. (2011). Immunotoxicity of cocaine and crack. Current Drug Abuse Reviews, 4(2), 95–97. https://doi.org/10.2174/1874473711104020095.

    Article  CAS  PubMed  Google Scholar 

  79. Stelzl, U., & Wanker, E. (2006). The value of high quality protein–protein interaction networks for systems biology. Current Opinion in Chemical Biology, 10(6), 551–558. https://doi.org/10.1016/j.cbpa.2006.10.005.

    Article  CAS  PubMed  Google Scholar 

  80. Stumpf, M. P. H., Thorne, T., de Silva, E., Stewart, R., An, H. J., Lappe, M., & Wiuf, C. (2008). Estimating the size of the human interactome. Proceedings of the National Academy of Sciences of the United States of America, 105(19), 6959–6964. https://doi.org/10.1073/pnas.0708078105.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Suhre, K., & Sanejouand, Y. H. (2004). ElNemo: A normal mode web server for protein movement analysis and the generation of templates for molecular replacement. Nucleic Acids Research, 32, W610–W614. https://doi.org/10.1093/nar/gkh368. (Web Server issue).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Taylor, N. R. (2013). Small world network strategies for studying protein structures and binding. Computational and Structural Biotechnology Journal, 5, e201302006. https://doi.org/10.5936/csbj.201302006.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Thibert, B., Bredesen, D. E., & del Rio, G. (2005). Improved prediction of critical residues for protein function based on network and phylogenetic analyses. BMC Bioinformatics, 6, 213. https://doi.org/10.1186/1471-2105-6-213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tiwari, S. P., & Reuter, N. (2018). Conservation of intrinsic dynamics in proteins—what have computational models taught us? Current Opinion in Structural Biology, 50, 75–81. https://doi.org/10.1016/j.sbi.2017.12.001.

    Article  CAS  PubMed  Google Scholar 

  85. van Zundert, G. C. P., Rodrigues, J., Trellet, M., Schmitz, C., Kastritis, P. L., Karaca, E.,…, Bonvin, A. (2016). The HADDOCK2.2 Web Server: User-friendly integrative modeling of biomolecular complexes. Journal of Molecular Biology, 428(4), 720–725. https://doi.org/10.1016/j.jmb.2015.09.014.

    Article  CAS  PubMed  Google Scholar 

  86. Vanhee, P., Reumers, J., Stricher, F., Baeten, L., Serrano, L., Schymkowitz, J., & Rousseau, F. (2010). PepX: A structural database of non-redundant protein-peptide complexes. Nucleic Acids Research, 38(Database issue), D545–D551. https://doi.org/10.1093/nar/gkp893.

    Article  CAS  PubMed  Google Scholar 

  87. Vendruscolo, M., Dokholyan, N. V., Paci, E., & Karplus, M. (2002). Small-world view of the amino acids that play a key role in protein folding. Physics Review E, 65(6 Pt 1), 061910. https://doi.org/10.1103/PhysRevE.65.061910.

    Article  CAS  Google Scholar 

  88. Vinogradova, O., & Qin, J. (2012). NMR as a unique tool in assessment and complex determination of weak protein-protein interactions. Topics in Current Chemistry, 326, 35–45. https://doi.org/10.1007/128_2011_216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Vourtsis, D. J., Chasapis, C. T., Pairas, G., Bentrop, D., & Spyroulias, G. A. (2014). NMR conformational properties of an Anthrax lethal factor domain studied by multiple amino acid-selective labeling. Biochemical and Biophysical Research Communications, 450(1), 335–340. https://doi.org/10.1016/j.bbrc.2014.05.123.

    Article  CAS  PubMed  Google Scholar 

  90. Wachi, S., Yoneda, K., & Wu, R. (2005). Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues. Bioinformatics, 21(23), 4205–4208. https://doi.org/10.1093/bioinformatics/bti688.

    Article  CAS  PubMed  Google Scholar 

  91. Wagner, G. (1993). NMR relaxation and protein mobility. Current Opinion in Structural Biology, 3(5), 748–754. https://doi.org/10.1016/0959-440x(93)90059-t.

    Article  CAS  Google Scholar 

  92. Wako, H., & Endo, S. (2013). Normal mode analysis based on an elastic network model for biomolecules in the Protein Data Bank, which uses dihedral angles as independent variables. Computational Biology and Chemistry, 44, 22–30. https://doi.org/10.1016/j.compbiolchem.2013.02.006.

    Article  CAS  PubMed  Google Scholar 

  93. Wako, H., Kato, M., & Endo, S. (2004). ProMode: A database of normal mode analyses on protein molecules with a full-atom model. Bioinformatics, 20(13), 2035–2043. https://doi.org/10.1093/bioinformatics/bth197.

    Article  CAS  PubMed  Google Scholar 

  94. Westermarck, J., Ivaska, J., & Corthals, G. L. (2013). Identification of protein interactions involved in cellular signaling. Molecular and Cellular Proteomics, 12(7), 1752–1763. https://doi.org/10.1074/mcp.R113.027771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wiesner, S., & Sprangers, R. (2015). Methyl groups as NMR probes for biomolecular interactions. Current Opinion in Structural Biology, 35, 60–67. https://doi.org/10.1016/j.sbi.2015.08.010.

    Article  CAS  PubMed  Google Scholar 

  96. Wuchty, S., & Almaas, E. (2005). Peeling the yeast protein network. Proteomics, 5(2), 444–449. https://doi.org/10.1002/pmic.200400962.

    Article  CAS  PubMed  Google Scholar 

  97. Xue, L. C., Rodrigues, J. P., Kastritis, P. L., Bonvin, A. M., & Vangone, A. (2016). PRODIGY: A web server for predicting the binding affinity of protein-protein complexes. Bioinformatics, 32(23), 3676–3678. https://doi.org/10.1093/bioinformatics/btw514.

    Article  CAS  PubMed  Google Scholar 

  98. Yan, W., Zhou, J., Sun, M., Chen, J., Hu, G., & Shen, B. (2014). The construction of an amino acid network for understanding protein structure and function. Amino Acids, 46(6), 1419–1439. https://doi.org/10.1007/s00726-014-1710-6.

    Article  CAS  PubMed  Google Scholar 

  99. Yellaboina, S., Tasneem, A., Zaykin, D. V., Raghavachari, B., & Jothi, R. (2011). DOMINE: A comprehensive collection of known and predicted domain-domain interactions. Nucleic Acids Research, 39(Database issue), D730–D735. https://doi.org/10.1093/nar/gkq1229.

    Article  CAS  PubMed  Google Scholar 

  100. Yook, S. H., Oltvai, Z. N., & Barabasi, A. L. (2004). Functional and topological characterization of protein interaction networks. Proteomics, 4(4), 928–942. https://doi.org/10.1002/pmic.200300636.

    Article  CAS  PubMed  Google Scholar 

  101. Zimmermann, M. T., Kloczkowski, A., & Jernigan, R. L. (2011). MAVENs: Motion analysis and visualization of elastic networks and structural ensembles. BMC Bioinformatics, 12, 264. https://doi.org/10.1186/1471-2105-12-264.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos T. Chasapis.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chasapis, C.T. Building Bridges Between Structural and Network-Based Systems Biology. Mol Biotechnol 61, 221–229 (2019). https://doi.org/10.1007/s12033-018-0146-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-018-0146-8

Keywords

Navigation