Skip to main content
Log in

Gene Delivery to Tobacco Root Cells with Single-Walled Carbon Nanotubes and Cell-Penetrating Fusogenic Peptides

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Development of efficient, easy, and safe gene delivery methods is of great interest in the field of plant biotechnology. Considering the limitations of the usual transfection methods (such as transgene size and plant type), several new techniques have been tested for replacement. The success of some biological and synthetic nanostructures such as cell-penetrating peptides and carbon nanotubes in transferring macromolecules (proteins and nucleic acids) into mammalian cells provoked us to assess the ability of an engineered chimeric peptide and also arginine functionalized single-walled carbon nanotube in gene delivery to intact tobacco (Nicotiana tabacum var. Virginia) root cells. It was suggested that the engineered peptide with its special cationic and hydrophobic domains and the arginine functionalized single-walled carbon nanotube due to its nano-cylindrical shape can pass plant cell barriers while plasmid DNA (which codes green fluorescent protein) has been condensed on them. The success of gene delivery to tobacco root cells was confirmed by fluorescence microscopy and western blotting analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Farkhani, S. M., Valizadeh, A., Karami, H., Mohammadi, S., Sohrabi, N., & Badrzadeh, F. (2014). Cell penetrating peptides: efficient vectors for delivery of nanoparticles, nanocarriers, therapeutic and diagnostic molecules. Peptide, 57, 78–94.

    Article  CAS  Google Scholar 

  2. Kim, H., Seo, E. H., Lee, S. H., & Kim, B. J. (2016) The telomerase-derived anticancer peptide vaccine GV1001 as an extracellular heat shock protein-mediated cell-penetrating peptide. International Journal of Molecular Sciences, 17, 2054.

    Article  CAS  Google Scholar 

  3. Chugh, A., Amundsen, E., & Eudes, F. (2009). Translocation of cell-penetrating peptides and delivery of their cargoes in triticale microspores. Plant Cell Reports, 28, 801–810.

    Article  CAS  PubMed  Google Scholar 

  4. Unnamalai, N., Kang, B. G., & Lee, W. S. (2004). Cationic oligopeptide-mediated delivery of dsRNA for post-transcriptional gene silencing in plant cells. FEBS Letters, 566, 307–310.

    Article  CAS  PubMed  Google Scholar 

  5. Zonin, E., Moscatiello, R., Miuzzo, M., Cavallarin, N., Dipaolo, M. L., Sandona, D., et al. (2011). Tat-mediated aequorin transduction: An alternative approach for effective calcium measurements in plant cells. Plant and Cell Physiology, 52, 2225–2235.

    Article  CAS  PubMed  Google Scholar 

  6. Rosenbluh, J., Singh, S., Gafni, Y., Graessmann, A., & Loyter, A. (2004). Non-endocytic penetration of core histones into petunia protoplasts and cultured cells: A novel mechanism for the introduction of macromolecules into plant cells. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1664, 230–240.

    Article  CAS  Google Scholar 

  7. Lakshmanan, M., Kodama, Y., Yoshizumi, T., Sudesh, K., & Numata, K. (2013). Rapid and efficient gene delivery into plant cells using designed peptide carriers. Biomacromolecules., 14, 10–16.

    Article  CAS  PubMed  Google Scholar 

  8. Numata, K., Ohtani, M., Yoshizumi, T., Demura, T., & Kodama, Y. (2014). Local gene silencing in plants via synthetic dsRNA and carrier peptide. Plant Biotechnology Journal, 12, 1027–1034.

    Article  CAS  PubMed  Google Scholar 

  9. Chuah, J., & Numata, K. (2018). Stimulus-responsive peptide for effective delivery and release of DNA in plants. Biomacromolecules, 19, 1154–1163.

    Article  CAS  PubMed  Google Scholar 

  10. Chuah, J., Yoshizumi, T., Kodama, Y., & Numata, K. (2015). Gene introduction into the mitochondria of Arabidopsis thaliana via peptide-based carriers. Science Reports, 5, 7751.

    Article  CAS  Google Scholar 

  11. Ng, K. K., Motoda, Y., Watanabe, S., Othman, A. S., Kigawa, T., Kodama, Y., et al. (2016). Intracellular delivery of proteins via fusion peptides in intact plants. PLoS ONE, 11, 1–19.

    Google Scholar 

  12. Pantarotto, D., Singh, R., McCarthy, D., Erhardt, M., Briand, J. P., Prato, M., et al. (2004). Functionalized carbon nanotubes for plasmid DNA gene delivery. Angewandte Chemie International Edition, 43, 5242–5246.

    Article  CAS  PubMed  Google Scholar 

  13. Liu, Y., Wu, D. C., Zhang, W. D., Jiang, X., He, C. B., Chung, T. S., et al. (2005). Polyethylenimine-grafted multiwalled carbon nanotubes for secure noncovalent immobilization and efficient delivery of DNA. Angewandte Chemie International Edition, 44, 4782–4785.

    Article  CAS  PubMed  Google Scholar 

  14. Foillard, S., Zuber, G., & Doris, E. (2011). Polyethylenimine–carbon nanotube nanohybrids for siRNA-mediated gene silencing at cellular level. Nanoscale, 3, 1461–1464.

    Article  CAS  PubMed  Google Scholar 

  15. Richard, C., Mignet, N., Largeau, C., Escriou, V., Bessodes, M., & Scherman, D. (2009). Functionalization of single- and multi-walled carbon nanotubes with cationic amphiphiles for plasmid DNA complexation and transfection. Nano Research, 2, 638–647.

    Article  CAS  Google Scholar 

  16. Khodakovskaya, M., Dervishi, E., Mahmood, M., Xu, Y., Li, Z., Watanabe, F., et al. (2009). Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano, 3, 3221–3227.

    Article  CAS  PubMed  Google Scholar 

  17. Khodakovskaya, M., De Silva, K., Biris, A. S., Dervishi, E., & Villagarcia, H. (2012). Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano, 6, 2128–2135.

    Article  CAS  PubMed  Google Scholar 

  18. Chen, G., Qiu, J., Liu, Y., Jiang, R., Cai, S., Liu, Y., et al. (2015). Carbon nanotubes act as contaminant carriers and translocate within plants. Science Reports, 5, 15682.

    Article  CAS  Google Scholar 

  19. Liu, Q., Chen, B., Wang, Q., Shi, X., Xiao, Z., Lin, J., et al. (2009). Carbon nanotubes as molecular transporters for walled plant cells. Nano Letters, 9, 1007–1010.

    Article  CAS  PubMed  Google Scholar 

  20. Burlaka, O. M., Pirco, Ya. V., Yemets, A. L., & Blume, Ya. B. (2015). Plant genetic transformation using carbon nanotubes for DNA delivery. Cytology and Genetics, 49, 3–12.

    Article  CAS  PubMed  Google Scholar 

  21. Majidi, A., Nikkhah, M., Sadeghian, F., & Hosseinkhani, S. (2016). Development of novel recombinant biomimetic chimeric MPG-based peptide as nanocarriers for gene delivery: Imitation of a real cargo. European Journal of Pharmaceutics and Biopharmaceutics, 107, 191–204.

    Article  CAS  PubMed  Google Scholar 

  22. Majidi, A., Nikkhah, M., Sadeghian, F., & Hosseinkhani, S. (2015). Design and bioinformatics analysis of novel biomimetic peptides as nanocarriers for gene transfer. Nanomedicine Journal, 2, 29–38.

    CAS  Google Scholar 

  23. Morris, M. C., Vidal, P., Chaloin, L., Heitz, F., & Divita, G. (1997). A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids Research, 25, 2730–2736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Simeoni, F., Morris, M. C., Heitz, F., & Divita, G. (2003). Insight into the mechanism of the peptide-based gene delivery system MPG: Implications for delivery of siRNA into mammalian cells. Nucleic Acids Research, 31, 2717–2724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Charbgoo, F., Behmanesh, M., & Nikkhah, M. (2015). Enhanced reduction of single-wall carbon nanotube cytotoxicity in vitro: Applying a novel method of arginine functionalization. Biotechnology and Applied Biochemistry, 62, 598–605.

    Article  CAS  PubMed  Google Scholar 

  26. Pompeo, F., & Resasco, D. E. (2002). Water solubilization of single-walled carbon nanotubes by functionalization glucosamine. Nano Letter, 2, 369–373.

    Article  CAS  Google Scholar 

  27. Zhang, L., Wang, X. J., Wang, J., Grinberg, N., Krishnamurthy, D., & Senanayake, C. H. (2009). An improved method of amide synthesis using acyl chlorides. Tetrahedron Letters, 50, 2964–2966.

    Article  CAS  Google Scholar 

  28. Chiu, W., Niwa, Y., Zeng, W., Hirano, T., Kobayashi, H., & Sheen, J. (1996). Engineered GFP as a vital reporter in plants. Current Biology, 6, 325–330.

    Article  CAS  PubMed  Google Scholar 

  29. Mirzapoor, A., & Ranjbar, B. (2017). Biophysical and electrochemical properties of self-assembled noncovalent SWNT/DNA hybrid and electroactive nanostructure. Physica E: Low-dimensional Systems and Nanostructures, 93, 208–215.

    Article  CAS  Google Scholar 

  30. Zhai, Z., Hung, H., & Vatamaniuk, O. K. (2009). Isolation of protoplasts from tissues of 14-day-old seedlings of Arabidopsis thaliana. Journal of Visualized Experiments, 30, 1149.

    Google Scholar 

  31. Wang, W., Vignani, R., Scali, M., & Cresti, M. (2006). A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis. Electrophoresis, 27, 2782–2786.

    Article  CAS  PubMed  Google Scholar 

  32. Mahmood, T., & Yang, P. (2012). Western blot: Technique, theory and trouble shooting. North American Journal of Medical Sciences, 4, 429–434.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Canine, B. F., & Hatefi, A. (2010). Development of recombinant cationic polymers for gene therapy research. Advanced Drug Delivery Reviews, 62, 1524–1529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Morris, M. C., Deshayes, S., Heitz, F., & Divita, G. (2008). Cell-penetrating peptides: From molecular mechanisms to therapeutics. Biology of the Cell, 100, 201–217.

    Article  CAS  PubMed  Google Scholar 

  35. Serag, M., Kaji, N., Gaillard, C., Okamoto, Y., Terasaka, K., Jabasini, M., et al. (2011). Trafficking and subcellular localizatio of multiwalled carbon nanotubes in plant cells. ACS Nano, 5, 493–499.

    Article  CAS  PubMed  Google Scholar 

  36. Yaron, P. N., Holt, B. D., Short, P. A., Losche, M., Islam, M. F., & Dahl, K. N. (2011). Single wall carbon nanotubes enter cells by endocytosis and not membrane penetration. Journal of Nanobiotechnology, 9, 45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen, C. P., Chou, J. C., Liu, B. R., Chang, M., & Lee, H. (2007). Transfection and expression of plasmid DNA in plant cells by an arginine-rich intracellular delivery peptide without protoplast preparation. FEBS Letters, 581, 1891–1897.

    Article  CAS  PubMed  Google Scholar 

  38. Chugh, A., & Eudes, F. (2008). Study of uptake of cell penetrating peptides and their cargoes in permeabilized wheat immature embryos. FEBS Journal, 275, 2403–2414.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, Y., Li, J., Shen, Y., Wang, M., & Li, J. (2004). Poly-l-lysine functionalization of single-walled carbon nanotubes. The Journal of Physical Chemistry B, 108, 15343–15346.

    Article  CAS  Google Scholar 

  40. Ghiadi, B., Baniadam, M., Maghrebi, M., & Amiri, A. (2013). Rapid one-pot synthesis of highly-soluble carbon nanotubes functionalized by l-arginine. Russian Journal of Physical Chemistry A, 87, 649–653.

    Article  CAS  Google Scholar 

  41. Schaffer, D. V., Fidelman, N. A., Dan, N., & Lauffenburger, D. A. (1999). Vector unpacking as a potential barrie for receptor-mediated polyplex gene delivery. Biotechnology and Bioengineering, 67, 598–606.

    Article  Google Scholar 

  42. Cohen, R. N., Aa, M. A., Macaraeg, N., Lee, A. P., & Szoka, F. J. (2009). Quantification of plasmid DNA copies in the nucleus after lipoplex and polyplex transfection. Journal of Control Release, 135, 166–174.

    Article  CAS  Google Scholar 

  43. El-Sayed, A., Futaki, S., & Harashima, H. (2009). Delivery of macromolecules using arginine-rich cell-penetrating peptides: Ways to overcome endosomal entrapment. AAPS Journal, 11, 13–22.

    Article  CAS  PubMed  Google Scholar 

  44. Lundberg, P., El-Andaloussi, S., Sutlu, T., Johansson, H., & Langel, U. (2007). Delivery of short interfering RNA using endosomolytic cell-penetrating peptides. The FASEB Journal, 21, 2664–2671.

    Article  CAS  PubMed  Google Scholar 

  45. Fang, Y., Akula, C., & Altpeter, F. (2002). Agrobacterium-mediated barley (Hordeum vulgare L.) transformation using green fluorescent protein as a visual marker and sequence analysis of the T-DNA: Barely genomic DNA junctions. Journal of Plant Physiology, 159, 1131–1138.

    Article  CAS  Google Scholar 

  46. Chang, M., Chou, J. C., & Lee, H. J. (2005). Cellular internalization of fluorescent proteins via arginine-rich intracellular delivery peptide in plant cells. Plant and Cell Physiology, 46, 482–488.

    Article  CAS  PubMed  Google Scholar 

  47. Winkel-shirley, B. (2002). Biosynthesis of flavonoids and effects of stress. Current Opinion in Plant Biology, 5, 218–223.

    Article  CAS  PubMed  Google Scholar 

  48. Petrussa, E., Braidot, E., Zancani, M., Peresson, C., Bertolini, A., Patui, S., et al. (2013). Plant flavonoids—Biosynthesis, transport and involvement in stress responses. International Journal of Molecular Sciences, 14, 14950–14973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kasote, D. M., Katyara, S. S., Hegde, M. V., & Bae, H. (2015). Significance of antioxidant potential of plants and its relevance to therapeutic applications. International Journal of Biological Sciences, 11, 982–991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Talamond, P., Verdeil, J. L., & Conejero, G. (2015). Secondary metabolite localization by autofluorescence in living plant cells. Molecules., 20, 5024–5037.

    Article  CAS  PubMed  Google Scholar 

  51. Carpita, N., Sabularse, D., Montezinos, D., & Delmer, D. P. (1979). Determination of the pore size of the cell walls of living plant cells. Science, 205, 1144–1147.

    Article  CAS  PubMed  Google Scholar 

  52. Meiners, S., Gharyal, P. K., & Schindler, M. (1991). Permeabilization of the plasmalemma and wall of soybean root cells to macromolecules. Planta, 184, 443–447.

    Article  CAS  PubMed  Google Scholar 

  53. Metraux, J. P., & Taiz, L. (1977) Cell wall extension in nitella as influenced by acids and ions. Proceedings of the National Academy of Sciences of the United States of America, 74, 1565–1569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cosgrove, D. J. (2000). Loosening of plant cell walls by expansins. Nature., 407, 321–326.

    Article  CAS  PubMed  Google Scholar 

  55. Sadeghian, F., Hosseinkhani, S., Alizadeh, A., & Hatefi, A. (2012). Design, engineering and preparation of a multi-domain fusion vector for gene delivery. International Journal of Pharmaceutics, 427, 393–399.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Nanobiotechnology Research Council of Tarbiat Modares University provided financial support of this work. Dr. Asia Majidi performed peptide carrier gene cloning and expression in this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Nikkhah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golestanipour, A., Nikkhah, M., Aalami, A. et al. Gene Delivery to Tobacco Root Cells with Single-Walled Carbon Nanotubes and Cell-Penetrating Fusogenic Peptides. Mol Biotechnol 60, 863–878 (2018). https://doi.org/10.1007/s12033-018-0120-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-018-0120-5

Keywords

Navigation