Skip to main content

Advertisement

Log in

Molecular Cloning and Biochemical Characterization of Iron Superoxide Dismutase from Leishmania braziliensis

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Leishmaniasis is one of the most important neglected tropical diseases, with a broad spectrum of clinical manifestations. Among the clinical manifestations of the disease, cutaneous leishmaniasis, caused by species of Leishmania braziliensis, presents wide distribution in Brazil. In this work, we performed the cloning, expression, and purification of the enzyme superoxide dismutase of Leishmania braziliensis (LbSOD-B2) considered a promising target for the search of new compounds against leishmaniasis. In vitro assays based on pyrogallol oxidation showed that LbSOD-B2 is most active around pH 8 and hydrogen peroxide is a LbSOD-B2 inhibitor at low millimolar range (IC50 = 1 mM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. de Menezes, J. P. B., Guedes, C. E. S., Petersen, A. L. D. O. A., Fraga, D. B. M., & Veras, P. S. T. (2015). Advances in development of new treatment for Leishmaniasis. BioMed Research International, 2015, 1–12. https://doi.org/10.1155/2015/815023.

    Article  CAS  Google Scholar 

  2. Gutierrez, F. R. S., Mineo, T. W. P., Pavanelli, W. R., Guedes, P. M. M., & Silva, J. S. (2009). The effects of nitric oxide on the immune system during Trypanosoma cruzi infection. Memórias do Instituto Oswaldo Cruz, 104 Suppl(Gilroy 2005), 236–245.

    Article  CAS  PubMed  Google Scholar 

  3. Tessarollo, N. G., Andrade, J. M., Moreira, D. S., & Murta, S. M. F. (2015). Functional analysis of iron superoxide dismutase-A in wild-type and antimony-resistant Leishmania braziliensis and Leishmania infantum lines. Parasitology International, 64(2), 125–129. https://doi.org/10.1016/j.parint.2014.11.001.

    Article  CAS  PubMed  Google Scholar 

  4. NASSIF, P.W., De Mello, T. F. P., Navasconi, T. R., Mota, C. A., Demarchi, I. G., Aristides, S. M. A., Lonardoni, M. V. C. (2017). Safety and efficacy of current alternatives in the topical treatment of cutaneous leishmaniasis: A systematic review. Parasitology. https://doi.org/10.1017/S0031182017000385.

    Article  Google Scholar 

  5. WHO. (2015). Investing to overcome the global impact of neglected tropical diseases: third WHO report on neglected diseases 2015. Investing to overcome the global impact of neglected tropical diseases: Third WHO report on neglected diseases. ISBN 978 92 4 156486 1.

  6. Torres-Guerrero, E., Quintanilla-Cedillo, M. R., Ruiz-Esmenjaud, J., & Arenas, R. (2017). Leishmaniasis: A review. F1000Research. https://doi.org/10.12688/f1000research.11120.1.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Longoni, S. S., Marín, C., & Sánchez-Moreno, M. (2014). Excreted Leishmania peruviana and Leishmania amazonensis iron-superoxide dismutase purification: Specific antibody detection in Colombian patients with cutaneous leishmaniasis. Free Radical Biology and Medicine, 69, 26–34. https://doi.org/10.1016/j.freeradbiomed.2014.01.012.

    Article  CAS  PubMed  Google Scholar 

  8. Sanchez-Moreno, M., Gomez-Contreras, F., Navarro, P., Marin, C., Ramirez-Macias, I., Rosales, M. J., et al. (2015). Imidazole-containing phthalazine derivatives inhibit Fe-SOD performance in Leishmania species and are active in vitro against visceral and mucosal leishmaniasis. Parasitology, 142(10), 1115–1129. https://doi.org/10.1017/S0031182015000657.

    Article  CAS  PubMed  Google Scholar 

  9. PAHO/WHO. (2015). Informe Epidemiológico das Américas. Report Leishmaniases No, 3, 3–7. https://doi.org/10.1017/CBO9781107415324.004.

    Article  Google Scholar 

  10. Yasinzai, M., Khan, M., Nadhman, A., & Shahnaz, G. (2013). Drug resistance in leishmaniasis: Current drug-delivery systems and future perspectives. Future Medicinal Chemistry, 5(15), 1877–1888. https://doi.org/10.4155/fmc.13.143.

    Article  CAS  PubMed  Google Scholar 

  11. Mouttaki, T., Morales-Yuste, M., Merino-Espinosa, G., Chiheb, S., Fellah, H., Martin-Sanchez, J., & Riyad, M. (2014). Molecular diagnosis of cutaneous leishmaniasis and identification of the causative Leishmania species in Morocco by using three PCR-based assays. Parasites & Vectors, 7, 420. https://doi.org/10.1186/1756-3305-7-420.

    Article  CAS  Google Scholar 

  12. Borborema, S. E. T., Osso Junior, J. A., de Andrade Junior, H. F., & do Nascimento, N. D. (2013). Biodistribution of meglumine antimoniate in healthy and Leishmania (Leishmania) infantum chagasi-infected BALB/c mice. Memorias do Instituto Oswaldo Cruz, 108(5), 623–630. https://doi.org/10.1590/0074-0276108052013014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mar Castro del M., Cossio, A., Velasco, C., Osorio, L., Saravia, N., & Cloetens, L. (2017). Risk factors for therapeutic failure to meglumine antimoniate and miltefosine in adults and children with cutaneous leishmaniasis in Colombia: A cohort study. PLoS Neglected Tropical Diseases, 11(4), e0005515. https://doi.org/10.1371/journal.pntd.0005515.

    Article  CAS  Google Scholar 

  14. de Vries, H. J. C., Reedijk, S. H., & Schallig, H. D. F. H. (2015). Cutaneous Leishmaniasis: Recent developments in diagnosis and management. American Journal of Clinical Dermatology, 16(2), 99–109. https://doi.org/10.1007/s40257-015-0114-z.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Haldar, A. K., Sen, P., & Roy, S. (2011). Use of antimony in the treatment of Leishmaniasis: Current status and future directions. Molecular Biology International, 2011, 1–23. https://doi.org/10.4061/2011/571242.

    Article  Google Scholar 

  16. Vanaerschot, M., de Doncker, S., Rijal, S., Maes, L., Dujardin, J. C., & Decuypere, S. (2011). Antimonial resistance in Leishmania donovani is associated with increased in vivo parasite burden. PLoS ONE, 6(8), 1–5. https://doi.org/10.1371/journal.pone.0023120.

    Article  CAS  Google Scholar 

  17. Van Assche, T., Deschacht, M., da Luz, RaI., Maes, L., & Cos, P. (2011). Leishmania-macrophage interactions: Insights into the redox biology. Free Radical Biology & Medicine, 51(2), 337–351. https://doi.org/10.1016/j.freeradbiomed.2011.05.011.

    Article  CAS  Google Scholar 

  18. Turrens, J. F. (2004). Oxidative stress and antioxidant defenses: A target for the treatment of diseases caused by parasitic protozoa. Molecular Aspects of Medicine, 25(1–2), 211–220. https://doi.org/10.1016/j.mam.2004.02.021.

    Article  CAS  PubMed  Google Scholar 

  19. Sheng, Y., Abreu, I. A., Cabelli, D. E., Maroney, M. J., Miller, A. F., Teixeira, M., & Valentine, J. S. (2014). Superoxide dismutases and superoxide reductases. Chemical Reviews, 114(7), 3854–3918. https://doi.org/10.1021/cr4005296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Plewes, K. A., Barr, S. D., & Gedamu, L. (2003). Iron superoxide dismutases targeted to the glycosomes of Leishmania chagasi are important for survival. Infection and Immunity, 71(10), 5910–5920. https://doi.org/10.1128/IAI.71.10.5910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Romero, A. H., Medina, R., Alcala, A., García-Marchan, Y., Núñez-Duran, J., Leañez, J., et al. (2017). Design, synthesis, structure-activity relationship and mechanism of action studies of a series of 4-chloro-1-phthalazinyl hydrazones as a potent agent against Leishmania braziliensis. European Journal of Medicinal Chemistry, 127, 606–620. https://doi.org/10.1016/j.ejmech.2017.01.022.

    Article  CAS  PubMed  Google Scholar 

  22. O’Shea, I. P., Shahed, M., Aguilera-Venegas, B., & Wilkinson, S. R. (2016). Evaluating 5-nitrothiazoles as trypanocidal agents. Antimicrobial Agents and Chemotherapy, 60(2), 1137–1140. https://doi.org/10.1128/AAC.02006-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Papadopoulou, M. V., Bloomer, W. D., Rosenzweig, H. S., Wilkinson, S. R., Szular, J., & Kaiser, M. (2016). Antitrypanosomal activity of 5-nitro-2-aminothiazole-based compounds. European Journal of Medicinal Chemistry, 117, 179–186. https://doi.org/10.1016/j.ejmech.2016.04.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sánchez-moreno, M., Gómez-Contreras, F., Navarro, P., Marín, C., Ramírez-macías, I., Olmo, F., et al. (2012). In vitro leishmanicidal activity of imidazole- or pyrazole-based benzo [g] phthalazine derivatives against leishmania infantum and leishmania braziliensis species. Journal of Antimicrobial Chemotherapy, 67(2), 387–397. https://doi.org/10.1093/jac/dkr480.

    Article  CAS  PubMed  Google Scholar 

  25. Froger, A., & Hall, J. E. (2007). Transformation of plasmid DNA into E. coli using the heat shock method. Journal of Visualized Experiments. https://doi.org/10.3791/253.

    Article  PubMed  Google Scholar 

  26. Aslanidis, C., & Dejong, P. J. (1990). Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Research, 18(20), 6069–6074. https://doi.org/10.1093/nar/18.20.6069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Marklund, S., & Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47, 469–474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x.

    Article  CAS  PubMed  Google Scholar 

  28. Stols, L., Gu, M., Dieckman, L., Raffen, R., Collart, F. R., & Donnelly, M. I. (2002). A new vector for high-throughput, ligation-independent cloning encoding a tobacco etch virus protease cleavage site. Protein Expression and Purification, 25(1), 8–15. https://doi.org/10.1006/prep.2001.1603.

    Article  CAS  PubMed  Google Scholar 

  29. Weeks, S. D., Drinker, M., & Loll, P. J. (2007). Ligation independent cloning vectors for expression of SUMO fusions. Protein Expression and Purification, 53(1), 40–50. https://doi.org/10.1016/j.pep.2006.12.006.

    Article  CAS  PubMed  Google Scholar 

  30. Fang, J., Chen, L., Cheng, B., & Fan, J. (2013). Engineering soluble tobacco etch virus protease accompanies the loss of stability. Protein Expression and Purification, 92(1), 29–35. https://doi.org/10.1016/j.pep.2013.08.015.

    Article  CAS  PubMed  Google Scholar 

  31. Sun, C., Liang, J., Shi, R., Gao, X., Zhang, R., Hong, F., et al. (2012). Tobacco etch virus protease retains its activity in various buffers and in the presence of diverse additives. Protein Expression and Purification, 82(1), 226–231. https://doi.org/10.1016/j.pep.2012.01.005.

    Article  CAS  PubMed  Google Scholar 

  32. Faúndez, M., Rojas, M., Bohle, P., Reyes, C., Letelier, M. E., Aliaga, M. E., et al. (2011). Pyrogallol red oxidation induced by superoxide radicals: Application to evaluate redox cycling of nitro compounds. Analytical Biochemistry, 419(2), 284–291. https://doi.org/10.1016/j.ab.2011.08.048.

    Article  CAS  PubMed  Google Scholar 

  33. Roth, E. F., & Gilbert, H. S. (1984). The pyrogallol assay for superoxide dismutase: Absence of a glutathione artifact. Analytical Biochemistry, 137(1), 50–53.

    Article  CAS  PubMed  Google Scholar 

  34. Meier, B., Michel, C., Saran, M., Parak, F., Rotilioii, G., & Oberschleissheim, D. (1995). Kinetic and spectroscopic studies on a superoxide dismutase from Propionibacterium shermanha that is active with iron or manganese: pH-dependence. Biochemical Journal, 310, 945–950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jr, W. B., & Fridovich, I. (1987). Effect of hydrogen peroxide on the iron-containing superoxide dismutase of Escherichia coli. Biochemistry, 26(5), 1251–1257.

    Article  Google Scholar 

  36. Gratepanche, S., Ménage, S., Touati, D., Wintjens, R., Delplace, P., Fontecave, M., et al. (2002). Biochemical and electron paramagnetic resonance study of the iron superoxide dismutase from Plasmodium falciparum. Molecular and Biochemical Parasitology, 120(2), 237–246. https://doi.org/10.1016/S0166-6851(02)00004-X.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the academic support of PPGBiotec-UEFS and the Grants from CNPq 306277/2014-0, FAPESB BOL0688/2014, and FAPESP 2013/07600-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo S. Castilho.

Ethics declarations

Conflict of interest

The authors confirm that this article content has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brito, C.C.B., Maluf, F.V., de Lima, G.M.A. et al. Molecular Cloning and Biochemical Characterization of Iron Superoxide Dismutase from Leishmania braziliensis. Mol Biotechnol 60, 595–600 (2018). https://doi.org/10.1007/s12033-018-0095-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-018-0095-2

Keywords

Navigation